Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Res ; 438: 114213, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372242

RESUMO

The present study investigated the involvement of mediodorsal thalamic (MD) GABA-A receptors in cetirizine/morphine-induced anti-allodynia using a rat model of neuropathic pain. To assess the importance of the prefrontal cortex (PFC) for chronic pain processing, its expression level changes of glial fibrillary acidic protein (GFAP) were measured following drug treatments. Each animal was subjected to chronic constriction of the sciatic nerve surgery simultaneously with the MD cannulation under stereotaxic surgery. The results showed that the administration of morphine (3-5 mg/kg) or cetirizine (1-3 mg/kg) produced significant analgesia in neuropathic rats. Systemic administration of cetirizine (2.5 and 3 mg/kg) potentiated the analgesic response to a low and intolerance dose of morphine (3 mg/kg). Intra-MD microinjection of muscimol, a selective GABA-A receptor agonist (0.005-0.01 µg/rat), increased the cetirizine/morphine-induced anti-allodynia, while muscimol by itself did not affect neuropathic pain. The neuropathic pain was associated with the increased PFC expression level of GFAP, suggesting the impact of chronic pain on PFC glial management. Interestingly, the anti-allodynia was associated with a decrease in the PFC expression level of GFAP under the drugs' co-administration. Thus, cetirizine has a significant potentiating effect on morphine response in neuropathic pain via interacting with the MD GABA-A receptors. It seems that neuropathic pain affects the prefrontal cortex GFAP signaling pathway. In clinical studies, these findings can be considered to create a combination therapy with low doses of GABA-A receptor agonist plus cetirizine and morphine to manage neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Ratos , Animais , Morfina/farmacologia , Receptores de GABA-A/metabolismo , Cetirizina/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Dor Crônica/tratamento farmacológico , Muscimol/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Neuralgia/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA