Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284991

RESUMO

The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.

2.
J Mol Graph Model ; 117: 108289, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35964364

RESUMO

The stabilization of non-IPR fullerenes for their isolation and characterization is an area of recent interest. In the present study, we have explored the stabilization techniques of C72 isomers via endo and exo-modifications and finally approached dual modification. A total of four isomers of C72 have been considered in this study; among them, one is IPR derivative (1), and the rest are non-IPR derivatives with one (2) and two (3 and 4) fused pentagon rings. First, we have studied the endohedral modification by encapsulating one and two La atoms in the C72 cavity. Secondly, we have exohedrally modified the C72 isomers via chlorination by adding four and eight chlorides, respectively. Our final approach is to study the dual modification, where we have implemented both endo exo-modifications together. This dual modification can be achieved in two ways: exo followed by endo and endo followed by exo. For each modification, the relative stability of every modified C72 derivative has been checked by calculating the relative energy with respect to the most stable modified analogue. To find out whether these modifications are energetically feasible or not, we have calculated the binding energy of each modified C72 isomer. The binding energy calculation reveals that the encapsulation and exo-modification techniques are good enough to stabilize the non-IPR C72 derivatives. Moreover, the effectiveness of dual modification has also been established from the enhanced binding energy compared to either endo- or exo-modification. We have also studied the NPA charges on the encapsulated La atoms for each endo- and dual-modified C72 derivative. Furthermore, the AIM study has also been perceived to find out the interaction between the La atom and the fullerene cages for both mono- and di-encapsulated fullerene derivatives and also between La-La centres for di-encapsulated derivatives. Overall, the present theoretical study will provide an idea about the stability of the modified C72 derivatives, which will help the experimentalists to design new strategies for synthesizing modified non-IPR fullerene derivatives that have vast applications in the medicinal and industrial fields.


Assuntos
Fulerenos , Cloretos , Fulerenos/química , Isomerismo , Modelos Moleculares
3.
J Mol Graph Model ; 109: 108037, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597884

RESUMO

The detoxication of DMMP (Dimethyl methylphosphonate) and DMPT (O, S-dimethyl methylphosphonothiolate) via hydrogenation have been investigated computationally employing density functional theory (DFT). In this present study, we aim to explore the direct molecular H2 assisted as well as ammonia-borane (NH3BH3) and 3-methyl-1,2-BN-cyclopentane (denoted as cy-AB) assisted hydrogenation pathways of DMMP and DMPT in order to detoxify them. The detoxication of DMMP has been carried out by successive elimination of two -OMe groups. However, in the case of DMPT, two possibilities have been identified because of two different substituents, -OMe and -SMe. In possibility-I, the elimination of the -OMe group occurs at the beginning, followed by the -SMe group, whereas in possibility-II, the reverse order of elimination occurs for -OMe and -SMe groups. During the detoxication of DMMP using both NH3BH3 and cy-AB as the assisting reagents, the first step has been identified as the rate-determining step (RDS) in which the hydrogens attached to the N- and B-centers of NH3BH3 are transferred to the O-center of PO and P-center, respectively. In harmony with DMMP detoxication, for DMPT also, analyzing the activation barriers, it can be articulated that for both NH3BH3 and cy-AB assisted pathways, both the possibilities are equally feasible as in both the possibilities the common first step is the RDS. Therefore, our computational study is designed to explore the assisting efficiency of NH3BH3 and its cyclic analogue for detoxifying the OPCs.


Assuntos
Amônia , Boranos , Hidrogênio , Modelos Teóricos , Compostos de Sulfônio
4.
J Mol Graph Model ; 87: 11-21, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468882

RESUMO

Termination process of Si(100)-2 × 1 as well as Ge(100)-2 × 1 reconstructed surfaces have been explored comprehensively through the dehydrogenation of ethane and ammonia-borane and their several analogues by employing density functional theory (DFT). From our study, it is evident that the termination of Si-surface via the dehydrogenation of aforementioned ethane and NH3BH3 derivatives is more feasible compared to Ge-surface. For ethane, the investigation shows that the substitution of non-participating hydrogens with +I group (electron donating) causes an enhancement in the kinetic and thermodynamic feasibility of the termination process, whereas the implementation of -I substituent (electron withdrawing) makes an adverse effect. While exploring the termination of Si- as well as Ge-surfaces through the dehydrogenation of NH3BH3 and its derivatives, it is noticed that from both the kinetic as well as thermodynamic perspectives, the termination processes are more feasible than that of ethane and its derivatives. We have further examined the detailed mechanism of each termination process by analyzing the geometrical parameters and NPA charges. From bonding evaluation, it is evident that the hydrogen abstraction from ethane by both the surfaces is symmetric in nature, where both the hydrogens show slightly positive charge. But for NH3BH3 the hydrogen abstraction process becomes asymmetric, where the boron associated hydrogen is abstracted as hydride by the electrophilic surface Si (Ge) and the hydrogen bonded with the N-centre is abstracted as proton by the nucleophilic surface Si (Ge). Overall, the present theoretical work reveals one of the efficient chemical processes for terminating Si as well as Ge(100)-2 × 1 reconstructed surfaces through the formation of non-polar SiH bonds.


Assuntos
Amônia/química , Etano/química , Hidrogênio/química , Modelos Teóricos , Modelos Moleculares , Propriedades de Superfície
5.
J Mol Model ; 24(10): 286, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242491

RESUMO

Using density functional theory, we explored the termination process of Si (100)-2 × 1 reconstructed surface mechanistically through the dehydrogenation of small molecules, considering methyl amine and methanol as terminating reagents. At first, both the terminating reagents form two types of adduct through adsorption on the Si (100)-2 × 1 surface, one in chemisorption mode and the other via physisorption, from which the dehydrogenation process is initiated. By analyzing the activation barriers, it was observed that termination of the Si-surface through the dehydrogenation is kinetically almost equally feasible using either reagent. We further examined in detail the mechanism for each termination process by analyzing geometrical parameters and natural population analysis charges. From bonding evaluation, it is evident that hydrogen abstraction from adsorbates on the Si-surface is asymmetric in nature, where one hydrogen is abstracted as hydride by the electrophilic surface Si and the other hydrogen is abstracted as proton by the neucleophilic surface Si. Moreover, it was also observed that hydride transfer from adsorbate to the Si-surface occurs first followed by proton transfer. Overall, our theoretical interpretation provides a mechanistic understanding of the Si (100)-2 × 1 reconstructed surface termination by amine and alcohol that will further motivate researchers to design different types of decorated semiconductor devices. Graphical Abstract Surface termination process of Si(100)-2×1 through formation of non-polar Si-H bonds via dehydrogenation of methylamine and methanol as terminating reagents.

6.
J Mol Model ; 23(7): 213, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647872

RESUMO

A mechanistic investigation to detect intramolecular M⋯X-C type interactions in d0 neutral and cationic complexes was carried out through a benchmark study employing different density functional methods. As γ-halogen is involved in M⋯X-C type interactions, it is denoted as a γ-halo interaction and the respective conformers are designated as halo-conformers. By analyzing the geometrical parameters of halo-conformers, it was observed that, irrespective of the nature of the metal and the halogen, the Cγ-X bond distance increases compared to the usual C-X bond, which brings the M and X centers close enough to generate a weak interaction. Generation of the M⋯X-C interaction was confirmed by performing NBO, AIM and Wiberg bond index analyses, from which the persistence of γ-halo interaction was seen to be prominent. Moreover, for each neutral and cationic complex, the values of Wiberg bond order are in good agreement with the AIM results. The effect of the metal center, as well as γ-halogen substitution, on γ-halo interaction was also studied in the present work. To justify the practical subsistence of the halo-conformers, we checked the stability of the conformers with respect to their ß-conformers by comparing the zero-point-corrected electronic energies. Therefore, the entire study was designed in such a way that it can provide evidence in support of intramolecular M⋯X-C interactions, where, instead of the C-H bond, the Cγ-X bond will interact with the central transition metal.

7.
Chem Res Toxicol ; 30(5): 1177-1187, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28402675

RESUMO

The detoxication of DMMP (dimethyl methylphosphonate) mediated by molecular TiO2 has been investigated computationally using density functional theory (DFT). From our previous studies, it is evident that the unimolecular detoxication of OPCs (organophosphorus compounds) is kinetically unfeasible at room temperature due to the significantly high activation barrier. Thus, the aim of our work is to find out whether molecular TiO2 can make any significant impact on the kinetic feasibility of the detoxication processes or not. Here, we have identified a total of three detoxication pathways, where in the first step the detoxication occurs through H-abstraction with the assistance of TiO2, and in the second step, the titanium complex is separated from the respective phospho-titanium complexes. The outcomes reveal that the TiO2-mediated detoxication pathways are at least 20.0 kcal/mol more favorable than their respective unimolecular pathways and that among them, the α-H-mediated isomerization is found to be the most feasible pathway. When the separation of a titanium complex is under consideration, the double H2O-assisted mechanism is found to be the favored pathway. Overall, the entire work provides a widespread idea about the efficiency of molecular TiO2-assisted detoxication of DMMP, which can be well applicable to other OPCs also.


Assuntos
Compostos Organofosforados/toxicidade , Titânio/farmacologia , Gases
8.
Chem Res Toxicol ; 29(9): 1439-57, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27509164

RESUMO

A mechanistic investigation has been carried out to explore all possible gas phase unimolecular isomerization as well as decomposition pathways of toxic organophosphorus compounds (OPCs), namely, sarin (GB) and soman (GD), which are better known as nerve agents. We have identified a total of 13 detoxication pathways for sarin, where the α-H, ß-H, and γ-H take part in the H-transfer process. However, for soman, due to the presence of ω-H, three additional detoxication pathways are obtained, where the ω-H is involved in the H-transfer process. Among all the pathways, the D3 decomposition pathway, where the phosphorus oxoacid derivative and alkene are generated via the formation of a six-membered ring in the transition state, is identified as the most feasible pathway from the perspective of both activation barrier and reaction enthalpy values. Moreover, we have studied the feasibility of the isomerization and decomposition pathways by performing the reaction kinetics in the temperature range of 300 K-1000 K using the one-dimensional Rice-Ramsperger-Kassel-Marcus (RRKM) master equation. From the RRKM calculation also, D3 pathway is confirmed as the most feasible pathway for both OPCs. The rate constant values associated with the D3 pathway within the temperature range of 600 K-700 K imply that the degradation of the OPCs is possible within this temperature range via the D3 pathway, which is in good agreement with the earlier reported experimental result. It is also observed that at higher temperature range (∼900 K), the increased rate constant values of other detoxication pathways indicate that along with D3, all other pathways become more or less equally feasible. Therefore, the entire work provides a widespread idea about the kinetic as well as thermodynamic feasibility of the explored detoxication pathways of the titled OPCs.


Assuntos
Sarina/metabolismo , Soman/metabolismo , Termodinâmica , Gases , Cinética , Estrutura Molecular , Transição de Fase , Sarina/química , Sarina/toxicidade , Soman/química , Soman/toxicidade
9.
J Phys Chem B ; 120(14): 3467-78, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27002923

RESUMO

We have theoretically explored the entire binding phenomena of d-penicillamine and its O- and Se-analogues with Cu(2+) in both gas and aqueous phases. At first, a brief conformational analysis has been performed via -XH and -COOH rotations to investigate such conformers that are suitable for binding in both bidentate as well as tridentate fashions. The stability of each bidentate and tridentate complex is determined on the basis of relative energy (ΔE) and gas phase metal ion affinity (MIA) along with the bonding analysis by using atoms in molecule theory. The effect of conformational change on the stability of the complexes is also examined thoroughly. By analyzing the MIA values, we have shown that the side chain substitution makes an impact on the binding process. To delve into the binding phenomena in aqueous phase, we have introduced both the first and second hydration sphere models. In first hydration sphere model, to realize the precise effect of water molecules we have considered stable octahedral hexa-aqua copper complex, [Cu(H2O)6](+2) and accordingly substituted water molecules depending on the bidentate or tridentate nature of the chelating agents. The influence of bulk water molecules on the energetics and geometries of the first hydrated sphere complexes have also been investigated by employing second hydration sphere model assuming physiological pH through the implementation of implicit COSMO and polarizable continuum models, respectively. In the second hydration sphere model, the zwitterionic structures of the amino acids and their side chain deprotonated forms are also included to study the binding phenomena with Cu(2+). The complete work furnishes both the binding properties and the energetics of the copper-artificial amino acid complexes in both gas and aqueous phases that will reflect a realistic overview of the entire binding phenomena.


Assuntos
Cobre/química , Modelos Moleculares , Oxigênio/química , Penicilamina/química , Selênio/química , Água/química , Ligantes , Conformação Molecular , Termodinâmica
10.
J Chem Phys ; 143(19): 194305, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26590535

RESUMO

A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA