Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Biol Macromol ; 274(Pt 1): 132767, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821296

RESUMO

This study introduces a pH-responsive hydrogel developed from Delonix regia and mucin co-poly(acrylate) through free radical polymerization to enhance controlled drug delivery systems. Characterization using FTIR, DSC, TGA, SEM, PXRD, and EDX spectroscopy detailed the hydrogel's amorphous and crystalline structures, thermal stability, surface characteristics, and elemental composition. Tested at a pH of 7.4-mimicking intestinal conditions-the hydrogel demonstrated significant swelling, indicating its capability for targeted drug release. With Metformin HCl as a model drug, the hydrogel exhibited a promising sustained release profile, underscoring its potential for oral administration. Safety and biocompatibility were assessed through acute oral toxicity studies in albino rabbits, encompassing biochemical, hematological, and histopathological evaluations. X-ray imaging confirmed the hydrogel's navigability through the gastrointestinal tract, affirming its application in drug delivery. By potentially mitigating gastrointestinal side effects, enhancing patient compliance, and improving therapeutic efficacy, this Delonix regia/mucin co-poly(acrylate) hydrogel represents a step in pharmaceutical sciences, exploring innovative materials and methodologies for drug delivery.

2.
Gels ; 9(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37504446

RESUMO

A hydrogel topical patch of neomycin was developed by using sodium alginate (SA) and hydroxyethylcellulose (HEC) as polymers. Free radical polymerization in an aqueous medium was initiated by using acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA). Prepared hydrogels were characterized for pH sensitivity and sol-gel analysis. In addition, the effect of reactant contents on the developed formulation was evaluated by swelling behavior. SEM assay showed the rough structure of the hydrogel-based polymeric matrix, which directly enhances the ability to uptake fluid. FTIR spectra revealed the formation of a new polymeric network between reactant contents. TGA and DSC verified that fabricated polymeric patches were more thermodynamically stable than pure components. Gel fractions increased with increases in polymer, monomer, and cross-linker contents. The swelling study showed the pH-dependent swelling behavior of patches at pH 5.5, 6.5, and 7.4. The release pattern of the drug followed zero-order kinetics, with diffusion-controlled drug release patterns according to the Korsmeyer-Peppas (KP) model. Ex vivo studies across excised rabbit skin verified the drug retention in the skin layers. The hydrogel patch effectively healed the wounds produced on the rabbit skin, whereas the formulation showed no sign of irritation on intact skin. Therefore, neomycin hydrogel patches can be a potential candidate for controlled delivery for efficient wound healing.

3.
Front Bioeng Biotechnol ; 11: 1190322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304144

RESUMO

Introduction: The objective of current project was to formulate a system for controlled delivery of Tramadol HCl (TRD), an opioid analgesic used in the treatment of moderate to severe pain. Methods: For this purpose, a pH responsive AvT-co-poly hydrogel network was formulated through free radical polymerization by incorporating natural polymers i.e., aloe vera gel and tamarind gum, monomer and crosslinker. Formulated hydrogels were loaded with Tramadol HCl (TRD) and evaluated for percent drug loading, sol-gel fraction, dynamic and equilibrium swelling, morphological characteristics, structural features and in-vitro release of Tramadol HCl. Results and Discussions: Hydrogels were proved to be pH sensitive as remarkable dynamic swelling response ranging within 2.94g/g-10.81g/g was noticed at pH 7.4 as compared to pH 1.2. Percent drug loading was in the range of 70.28%-90.64% for all formulations. Thermal stability and compatibility of hydrogel components were validated by DSC analysis and FTIR spectroscopy. Controlled release pattern of Tramadol HCl from the polymeric network was confirmed as maximum release of 92.22% was observed for over a period of 24 hours at pH 7.4. Moreover, oral toxicity studies were also conducted in rabbits to investigate the safety of hydrogels. No evidence of any toxicity, lesions and degeneration was reported, confirming the biocompatibility and safety of grafted system.

4.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050266

RESUMO

Wound healing faces significant challenges in clinical settings. It often contains a series of dynamic and complex physiological healing processes. Instead of creams, ointments and solutions, alternative treatment approaches are needed. The main objective of the study was to formulate bacitracin zinc-loaded topical patches as a new therapeutic agent for potential wound healing. A free radical polymerization technique was optimized for synthesis. Polyethylene glycol-8000 (PEG-8000) was chemically cross-linked with acrylic acid in aqueous medium, using Carbopol 934 as a permeation enhancer and tween 80 as surfactant. Ammonium persulfate and N,N'-Methylenebisacrylamide (MBA) were utilized as initiator and cross-linker. FTIR, DSC, TGA, and SEM were performed, and patches were evaluated for swelling dynamics, sol-gel analysis, in vitro drug release in various media. A Franz diffusion cell was used for the permeation study. Irritation and wound healing with the drug-loaded patches were also studied. The characterization studies confirmed the formation of a cross-linked hydrogel network. The highest swelling and drug release were observed in formulations containing highest Polyethylene glycol-8000 and lowest N,N'-Methylenebisacrylamide concentrations. The pH-sensitive behavior of patches was also confirmed as more swelling, drug release and drug permeation across skin were observed at pH 7.4. Fabricated patches showed no sign of irritation or erythema as evaluated by the Draize scale. Faster wound healing was also observed with fabricated patches compared to marketed formulations. Therefore, such a polymeric network can be a promising technology for speeding up wound healing and minor skin injuries through enhanced drug deposition.

5.
Pharmaceutics ; 15(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839971

RESUMO

Free-radical polymerization technique was adopted to fabricate a stimuli-responsive intelligent quince/mucin co-poly (methacrylate) hydrogel for the controlled delivery of acyclovir sodium. The developed hydrogel matrices were appraised using different parameters, such as drug loading (%), swelling kinetics, pH- and electrolyte-responsive swelling, and sol-gel fraction. Drug-excipient compatibility study, scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, in vitro drug release studies, drug release kinetics and acute oral toxicity studies were conducted. The results of drug loading revealed an acyclovir sodium loading of 63-75% in different formulations. The hydrogel discs exhibited pH-responsive swelling behavior, showing maximum swelling in a phosphate buffer with a pH of 7.4, but negligible swelling was obvious in an acidic buffer with a pH of 1.2. The swelling kinetics of the developed hydrogel discs exhibited second-order kinetics. Moreover, the hydrogel discs responded to the concentration of electrolytes (CaCl2 and NaCl). The results of the FTIR confirm the formation of the hydrogel via free-radical polymerization. However, the major peaks of acyclovir remain intact, proving drug-excipient compatibility. The results of the SEM analysis reveal the porous, rough surface of the hydrogel discs with multiple cracks and pores over the surface. The results of the PXRD disclose the amorphous nature of the fabricated hydrogel. The dissolution studies showed a minor amount of acyclovir sodium released in an acidic environment, while an extended release up to 36 h in the phosphate buffer was observed. The drug release followed Hixen-Crowell's kinetics with Fickian diffusion mechanism. The toxicity studies demonstrated the non-toxic nature of the polymeric carrier system. Therefore, these results signify the quince/mucin co-poly (methacrylate) hydrogel as a smart material with the potential to deliver acyclovir into the intestine for an extended period of time.

6.
Drug Deliv Transl Res ; 13(6): 1780-1798, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36735216

RESUMO

Dissolving microneedles have become a popular method for percutaneous administrationof drugs. However, loading poorly soluble drugs into water-based dissolving microneedles remains a challenge. In view of this, we aimed to improve Diacerein (DCN) solubility formulating dissolving microneedles. DCN microsuspension was created by high-speed homogenization with organic solvents or wet milling with Tween 80 as a stabilizer (LD1). They were analyzed for particle size and saturation solubility. Subsequently, the organic solvent-based microneedles were prepared under vacuum, whereas LD1 was mixed with HPMC (8% w/w) and PVP (30% w/w) matrix to concentrate the drug in acral fraction through centrifugation. DCN microsuspension in DMSO had the highest drug solubility with an average particle size of 6 µm, whereas LD1 had a particle size of 3.28 µm showing improved solubility. TD-3 had the highest drug loading and the least amount of drug migration into the blank baseplate. Within 5 min, these microneedles dissolved completely in an agarose-gel block. LD1 was likewise put in the baseplate to generate TD3-B. Within 24 h, 74.39% of the medication was released from TD3-B, with only a small amount remaining in the baseplate. TLC examination indicated the conversion of DCN to Rhein in the skin, whereas DSC and TGA studies revealed amorphous features. DCN microneedles showed no sign of skin irritancy but showed anti-inflammatory response on carrageenan-induced paw edema model. Microneedles remained stable during accelerated stability testing. Wet milling in the presence of a stabilizer can be an effective approach for enhancing DCN solubility for improved drug loading in dissolving microneedles. Improvement in solubility of Diacerein for subsequent loading in Dissolving Microneedle for percutaneous delivery.


Assuntos
Pele , Água , Administração Cutânea , Solubilidade , Anti-Inflamatórios , Sistemas de Liberação de Medicamentos/métodos , Agulhas
7.
Curr Drug Deliv ; 20(9): 1351-1367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35770410

RESUMO

BACKGROUND: Diacerein, an osteoarthiritis drug, experiences slow topical permeation due to limited solubility. Additionally, it shows a laxative effect due to acid/base hydrolysis of the drug in the colon. OBJECTIVE: Diacerein solubility was improved to increase percutaneous drug delivery. METHODS: To improve saturation solubility of the drug, Diacerein was pre-treated with Polysorbate 80 aqueous solution (1% v/v) to obtain lyophilized powder after wet milling or formulated as solid dispersion using PEG 4000 by fusion method. The lyophilized Diacerein in hydroxypropyl methylcellulose (HPMC 8% w/w) and polyvinyl pyrrolidone (PVP 30% w/w) matrix, with PEG 400 as co-solvent, provided an optimized array. The solid dispersion was loaded in the CMC based gel for subsequent administration on dissolving microneedle-treated skin. RESULTS: The addition of PEG 400 increased Diacerein loading in microneedles to 390.35±4.28 µg per array. The lyophilized drug displayed amorphous characteristics in the dissolving microneedles as per XRD analysis. SEM photographs showed uniformity in the surface topology of microneedles. The needles showed rapid polymer dissolution within 5 minutes, whereas methylene-blue distribution confirmed the formation of microcavities in excised rat skin. The drug-loaded arrays showed better permeation (74.39%) and skin deposition (15.75%) after 24 hours, however, ⁓12% of Diacerein remained in the baseplate. This led to the tailoring of CMC-based gel (3% w/v) containing 0.4% solid dispersion of Diacerein. When compared to untreated skin, the gel improved permeation rate by 2.43 folds through aqueous microchannels generated by dissolving microneedle pre-treatment and allowed 98% drug permeation. The quasi-Fickian diffusion mechanism was found to drive ex vivo release kinetics, with a shorter lag time (0.88 h) and higher flux (26.65 µg/sq.cm.h). Microneedle-assisted Diacerein gel showed a positive anti-inflammatory effect in the paw edema model and reduced diarrheal episodes in comparison to the marketed oral formulation. The gel showed desired characteristics at 5°C±2°C when tested under accelerated stability conditions. CONCLUSION: The present study reports for the first time the verification of efficacy and safety to advocate the suitability of Diacerein for percutaneous delivery through dissolving microneedle-treated skin.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Ratos , Animais , Solubilidade , Administração Cutânea , Anti-Inflamatórios , Agulhas
8.
Polym Bull (Berl) ; 80(6): 6965-6988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35966180

RESUMO

In this study, an inorganic-organic composite system was developed through biomineralization of calcium carbonate in the quince-seed mucilage-based hydrogel. Drug-polymer interactions were studied by FTIR, DSC, XRD and SEM analysis. The water absorption capacity was calculated by swelling index. Drug release was determined at various pH. Several in vitro kinetic models were applied to observe drug release behaviour. Studies of drug-polymer interactions and particle flow characteristics of the developed composite material have shown that there is good compatibility between drug and the excipients. The XRD and SEM results confirmed calcite polymorphs in the developed composite material. Thermograms showed that the developed composite material was heat stable. A restricted drug release was observed in an acidic medium (pH 1.2). A controlled drug release was depicted from the developed system at pH 6.8. The drug release mechanism of Super Case II was suggested. The developed system was considered to be an effective drug carrier for colon targeted oral delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to avoid gastric irritation and risk of ulceration. Graphical abstract: An illustration of extraction of quince hydrogel and development of calcium carbonate-quince (CaCO3-Q) composite system; QSM = Quince seed mucilage. Supplementary Information: The online version contains supplementary material available at 10.1007/s00289-022-04400-1.

9.
Chemosphere ; 304: 135346, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35714954

RESUMO

Microalgae have the highest capability to fix the atmospheric carbon and wastewater-derived nutrients to produce high-value bioproducts including lipids and carotenoids. However, their lower titers and single-product-oriented biomass processing have made the overall process expensive. Hence, increased metabolite titer and processing of the biomass for more than one product are required to ensure the commercial robustness of the algal biorefinery. In this study, a newly isolated algal strain was identified as Bracteacoccus pseudominor BERC09 through phylogenetic analysis based on the 18S rRNA gene sequence. Basic characterization of the strain revealed its promising potential to produce carotenoids and lipids. The lipids and carotenoid biosynthesis pathways of BERC09 were further triggered by manipulating the abiotic factors including nitrogen sources (NaNO3, KNO3, NH4Cl, Urea), nitrogen concentrations (0.06-0.36 gL-1), light intensity (150 µmolm-2s-1 to 300 µmolm-2s-1), and light quality (white and blue). Resultantly, 300 µmolm-2s-1 of blue light yielded 0.768 gL-1 of biomass, 8.4 mgg-1 of carotenoids, and 390 mgg-1 of lipids, and supplementation of 0.36 gL-1 of KNO3 further improved metabolism and yielded 0.814 gL-1 of biomass, 11.86 mgg-1 of carotenoids, and 424 mgg-1 of lipids. Overall, the optimal combination of light and nitrogen concurrently improved biomass, carotenoids, and lipids by 3.5-fold, 6-fold, and 4-fold than control, respectively. Besides, the excellent glycoproteins-based self-flocculation ability of the strain rendered an easier harvesting via gravity sedimentation. Hence, this biomass can be processed in a cascading fashion to use this strain as a candidate for a multiproduct biorefinery to achieve commercial robustness and environmental sustainability.


Assuntos
Clorofíceas , Microalgas , Biomassa , Carotenoides/metabolismo , Clorofíceas/metabolismo , Lipídeos , Microalgas/metabolismo , Nitrogênio/metabolismo , Filogenia
10.
Cells ; 10(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34571899

RESUMO

Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Transcriptoma , Adenosina/análogos & derivados , Adenosina/química , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Processamento Pós-Transcricional do RNA
11.
Biomedicines ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207299

RESUMO

Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have been predominantly focused on DNA methylation, histone modifications, and chromatin remodelling. Epitranscriptomics is an emerging field that encompasses the study of RNA modifications that do not affect the RNA sequence but affect functionality via a series of RNA binding proteins called writer, reader and eraser. Several kinds of epi-RNA modifications are known, such as 6-methyladenosine (m6A), 5-methylcytidine (m5C), and 1-methyladenosine. M6A modification is the most studied and has large therapeutic implications. In this review, we have summarised the therapeutic potential of m6A-modifiers in controlling haematological disorders, especially acute myeloid leukaemia (AML). AML is a type of blood cancer affecting specific subsets of blood-forming hematopoietic stem/progenitor cells (HSPCs), which proliferate rapidly and acquire self-renewal capacities with impaired terminal cell-differentiation and apoptosis leading to abnormal accumulation of white blood cells, and thus, an alternative therapeutic approach is required urgently. Here, we have described how RNA m6A-modification machineries EEE (Editor/writer: Mettl3, Mettl14; Eraser/remover: FTO, ALKBH5, and Effector/reader: YTHDF-1/2) could be reformed into potential druggable candidates or as RNA-modifying drugs (RMD) to treat leukaemia. Moreover, we have shed light on the role of microRNAs and suppressors of cytokine signalling (SOCS/CISH) in increasing anti-tumour immunity towards leukaemia. We anticipate, our investigation will provide fundamental knowledge in nurturing the potential of RNA modifiers in discovering novel therapeutics or immunotherapeutic procedures.

12.
Curr Top Med Chem ; 21(8): 753-766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33655864

RESUMO

MicroRNAs (miRNAs) are short ~18-22 nucleotide, single-stranded, non-coding RNA molecules playing a crucial role in regulating diverse biological processes and are frequently dysregulated during disease pathogenesis. Thus, targeting miRNA could be a potential candidate for therapeutic invention. This systemic review aims to summarize our current understanding regarding the role of miRNAs associated with Th2-mediated immune disorders and strategies for therapeutic drug development and current clinical trials.


Assuntos
Doenças do Sistema Imunitário/tratamento farmacológico , MicroRNAs/genética , Células Th2/imunologia , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia
13.
Vaccines (Basel) ; 9(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670630

RESUMO

There are several emerging strategies for the vaccination of COVID-19 (SARS-CoV-2) however, only a few have yet shown promising effects. Thus, choosing the right pathway and the best prophylactic options in preventing COVID-19 is still challenging at best. Approximately, more than two-hundred vaccines are being tested in different countries, and more than fifty clinical trials are currently undergoing. In this review, we have summarized the immune-based strategies for the development of COVID-19 vaccines and the different vaccine candidate platforms that are in clinical stages of evaluation, and up to the recently licensed mRNA-based COVID-19 vaccines of Pfizer-BioNtech and Moderna's. Lastly, we have briefly included the potentials of using the 'RPS-CTP vector system' for the development of a safe and effective oral mucosal COVID-19 vaccine as another vaccine platform.

14.
Saudi Pharm J ; 28(5): 538-549, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435134

RESUMO

Herein, we designed a novel gastroretentive drug delivery system as floating matrix tablets based on a polysaccharide material from linseeds (Linum usitatissimum L.) for fluoroquinolone antibiotics. A number of formulations were designed with a combination of linseed hydrogel (LSH) and different excipients to obtain a desired sustained release profile of moxifloxacin. The drug release study was performed basically at pH 1.2. However, the tablet may pass through the stomach to intestine due to certain reasons then it also offered sustained drug release at intestinal pH 4.5, 6.8 and 7.4, as well. Results indicated that sustained moxifloxacin release was directly proportional to the concentration of LSH and the release of drug followed non-Fickian diffusion. SEM of the tablets indicated porous nature of LSH with elongated channels which contributed to the swelling of the tablet and then facilitated the discharge of moxifloxacin from the core of the tablet. In vivo X-ray study was performed to assess disintegration and real-time floating of tablet that confirmed its presence for 6 h in the stomach. These findings indicated that LSH can be used to develop novel gastroretentive sustained release drug delivery systems with the double advantage of sustained drug release at all pH of GIT.

15.
RSC Adv ; 10(34): 19832-19843, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520449

RESUMO

Artemisia vulgaris seeds extrude hydrogel (AVH), which shows extraordinary swelling in water, at pH 6.8, and 7.4, which follows second-order kinetics. AVH exhibits reversible swelling/deswelling in ethanol and normal saline as well at pH 7.4 and pH 1.2. Therefore, AVH shows stimuli-responsiveness in different physiological conditions, solvents, and electrolytes. The superporous nature of AVH in swollen/freeze-dried sculpture is exposed in their SEM micrographs. AVH-based aceclofenac tablet formulations offer sustained-release under simulated conditions of the gastrointestinal tract (GIT) in terms of pH and transit time. Pharmacokinetic studies also show the delay and prolonged plasma concentration with t max of 8 h, therefore, such formulations can be used to enhance the bioavailability of aceclofenac. The swelling behavior of the AVH tablet is also assessed using MRI. The in vivo fate of the AVH tablet is monitored by X-ray during the transit through the GIT. Acute toxicity studies of AVH indicate the absence of any toxicity which reveals the safety profile of AVH. Therefore, AVH can be used for oral, topical and ophthalmic drug delivery systems. These results establish the potential of AVH as a stimuli sensitive, pH-dependent, and sustained-release biomaterial for targeted drug delivery.

16.
Drug Dev Ind Pharm ; 46(1): 122-134, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31860373

RESUMO

Objective: Development of stimuli-responsive intelligent drug delivery system (based on a polysaccharide, glucuronoxylan [GX]) with on-off switching properties under physiological conditions.Significance: As GX exhibits high swelling index and stimuli-responsive swelling/de-swelling properties, therefore, this material appeared highly useful to design pH, solvent and ionic stress-sensitive oral tablet formulations, which offered on-off switching properties. In this way, we could design intelligent/smart drug delivery systems for levosulpiride (LS) and theophylline (TF) with valuable pharmaceutical properties.Methods: GX-based tablet formulations were explored for stimuli-responsive, reversible swelling-deswelling behavior, dynamic swelling, and its kinetics. Tablet surface and channeling after swelling were observed using scanning electron microscopy (SEM). Drug release study was performed mimicking the physiological conditions like pH and transit time of gastrointestinal tract (GIT). Radiographic images of tablet path (in vivo) were recorded.Results: GX-based formulations exhibited high swelling in deionized water (DW), pH 6.8 and 7.4 while negligible swelling at pH 1.2. SEM images discovered the presence of microcracks and nanopores on the surface of tablets and showed channeling after swelling of tablets in DW. Sustained drug release was observed and found directly proportional to the concentration of GX in the formulations with negligible release at pH 1.2. In vivo radiographic evaluation indicated the retention of tablets in GIT for 7 h. Hemocompatibility studies showed the non-thrombogenic and non-hemolytic nature of GX.Conclusions: GX-based smart/stimuli-responsive formulations can control/sustain the release of drugs in GIT.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Polissacarídeos/química , Xilanos/química , Administração Oral , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Cinética , Polissacarídeos/farmacologia , Comprimidos , Xilanos/farmacologia
17.
Biotechnol Appl Biochem ; 67(1): 41-51, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31486562

RESUMO

Algal lipids have shown promising feedstock to produce biodiesel due to higher energy content, higher cetane number, and renewable nature. However, at present, the lipid productivity is too low to meet the commercial needs. Various approaches can be employed to enhance the lipid content and lipid productivity in microalgae. Stress manipulation is an attractive option to modify the algal lipid content, but it faces the drawback of time-consuming production processing and lack of information about molecular mechanisms related to triacylglycerides production in response to stress. Developing the robust hyper lipid accumulating algal strains has gained momentum due to advances in metabolic engineering and synthetic biology tools. Understanding the molecular basis of lipid biosynthesis followed by reorienting the related pathways through genomic modification is an alluring strategy that is believed to achieve the industrial and economic robustness. This review portrays the use of integrated OMIC approaches to elucidate the molecular mechanisms of strain adaptability in response to stress conditions, and identification of molecular pathways that should become novel targets to develop novel algal strains. Moreover, an update on the metabolic engineering approaches to improve the lipid production in microalgae is also provided.


Assuntos
Biocombustíveis , Lipídeos/biossíntese , Engenharia Metabólica , Microalgas/metabolismo , Biotecnologia
18.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052382

RESUMO

Dendritic cells (DCs) are the professional antigen-presenting cells that recognize and present antigens to naïve T cells to induce antigen-specific adaptive immunity. Among the T-cell subsets, T helper type 2 (Th2) cells produce the humoral immune responses required for protection against helminthic disease by activating B cells. DCs induce a Th2 immune response at a certain immune environment. Basophil, eosinophil, mast cells, and type 2 innate lymphoid cells also induce Th2 immunity. However, in the case of DCs, controversy remains regarding which subsets of DCs induce Th2 immunity, which genes in DCs are directly or indirectly involved in inducing Th2 immunity, and the detailed mechanisms underlying induction, regulation, or maintenance of the DC-mediated Th2 immunity against allergic environments and parasite infection. A recent study has shown that a genetic defect in DCs causes an enhanced Th2 immunity leading to severe atopic dermatitis. We summarize the Th2 immune-inducing DC subsets, the genetic and environmental factors involved in DC-mediated Th2 immunity, and current therapeutic approaches for Th2-mediated immune disorders. This review is to provide an improved understanding of DC-mediated Th2 immunity and Th1/Th2 immune balancing, leading to control over their adverse consequences.


Assuntos
Células Dendríticas/imunologia , Doenças do Sistema Imunitário/imunologia , Células Th2/imunologia , Animais , Humanos , Doenças do Sistema Imunitário/terapia , Imunoterapia/métodos
19.
Arch Pharm Res ; 42(7): 582-590, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30937843

RESUMO

Many efforts have been made to improve the efficacy of dendritic cell (DC) vaccines in DC-based cancer immunotherapy. One of these efforts is to deliver a DC vaccine more efficiently to the regional lymph nodes (rLNs) to induce stronger anti-tumor immunity. Together with chemotaxis, transendothelial migration (TEM) is believed to be a critical and indispensable step for DC vaccine migration to the rLNs after administration. However, the mechanism underlying the in vitro-generated DC TEM in DC-based cancer immunotherapy has been largely unknown. Currently, junctional adhesion molecules (JAMs) were found to play an important role in the TEM of in vitro generated DC vaccines. This paper reviews the TEM of DC vaccines and TEM-associated JAM molecules.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia , Neoplasias/terapia , Migração Transendotelial e Transepitelial/imunologia , Animais , Humanos , Neoplasias/imunologia
20.
Pak J Pharm Sci ; 31(6): 2429-2434, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30473514

RESUMO

In present investigation aqueous and methanolic extracts of Nelumbium speciosum flowers were screened for phytochemical constituents and antibacterial activity to ascertain their traditional use. Antimicrobial activity of both extracts was tested by Kirby-Bauer disc diffusion method against four Gram positive strains, viz. Staphylococcus aureus (ATCC25923), Streptococcus agalactiae (13813), Bacillus subtilis (ATCC 6633), Staphylococcus epidermidis (ATCC 12228) and four Gram negative bacterial strains Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 27853), Proteus mirabilis (12453) and Klebsiella pneumoniae (10031). Phytochemical analysis showed the presence of tannins, saponins and alkaloids in both extracts while flavonoids and steroids were present only in methanolic extract. Methanolic extract of Nelumbium speciosum flower showed concentration dependent antibacterial activity against all tested strains with maximum zone of inhibition (17.3±0.3mm) against P. aeruginosa. Aqueous extract showed concentration dependent activity against S. aureus, E. coli, B. subtilis and S. epidermidis with maximum antibacterial activity against E. coli (14.3±0.3mm). MIC of methanolic and aqueous extracts was in the range of 0.015-0.251 and 0.0625-0.251 mg/mL, respectively. Results showed that methanolic extract of Nelumbium speciosum exhibits superior antibacterial activity than aqueous extract.


Assuntos
Antibacterianos/farmacologia , Flores , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Metanol/química , Nelumbonaceae , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Solventes/química , Água/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Relação Dose-Resposta a Droga , Flores/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Nelumbonaceae/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA