Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ecol ; 32(15): 4447-4460, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303030

RESUMO

Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.


Assuntos
Antibacterianos , Infecções Bacterianas , Coinfecção , Resistência Microbiana a Medicamentos , Peixes , Coinfecção/microbiologia , Peixes/microbiologia , Peixes/parasitologia , Animais
2.
Mol Ecol ; 31(20): 5402-5418, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917247

RESUMO

Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.


Assuntos
Bacteriófagos , Prófagos , Bacteriófagos/genética , Ecossistema , Genoma Bacteriano/genética , Prófagos/genética , Temperatura , Virulência/genética
3.
Epigenetics ; 17(8): 861-881, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34519613

RESUMO

Epigenetic modifications can contribute to adaptation, but the relative contributions of genetic and epigenetic variation are unknown. Previous studies on the role of epigenetic changes in adaptation in eukaryotes have nearly exclusively focused on cytosine methylation (m5C), while prokaryotes exhibit a richer system of methyltransferases targetting adenines (m6A) or cytosines (m4C, m5C). DNA methylation in prokaryotes has many roles, but its potential role in adaptation still needs further investigation. We collected phenotypic, genetic, and epigenetic data using single molecule real-time sequencing of clones of the bacterium Serratia marcescens that had undergone experimental evolution in contrasting temperatures to investigate the relationship between environment and genetic, epigenetic, and phenotypic changes. The genomic distribution of GATC motifs, which were the main target for m6A methylation, and of variable m6A epiloci pointed to a potential link between m6A methylation and regulation of gene expression in S. marcescens. Evolved strains, while genetically homogeneous, exhibited many polymorphic m6A epiloci. There was no strong support for a genetic control of methylation changes in our experiment, and no clear evidence of parallel environmentally induced or environmentally selected methylation changes at specific epiloci was found. Both genetic and epigenetic variants were associated with some phenotypic traits. Overall, our results suggest that both genetic and adenine methylation changes have the potential to contribute to phenotypic adaptation in S. marcescens, but that any environmentally induced epigenetic change occurring in our experiment would probably have been quite labile.


Assuntos
Metilação de DNA , Serratia marcescens , Adenina , Epigênese Genética , Mutação , Serratia marcescens/genética , Temperatura
4.
Appl Environ Microbiol ; 87(16): e0081221, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34106011

RESUMO

Increasing problems with antibiotic resistance have directed interest toward phage therapy in the aquaculture industry. However, phage resistance evolving in target bacteria is considered a challenge. To investigate how phage resistance influences the fish pathogen Flavobacterium columnare, two wild-type bacterial isolates, FCO-F2 and FCO-F9, were exposed to phages (FCO-F2 to FCOV-F2, FCOV-F5, and FCOV-F25, and FCO-F9 to FCL-2, FCOV-F13, and FCOV-F45), and resulting phenotypic and genetic changes in bacteria were analyzed. Bacterial viability first decreased in the exposure cultures but started to increase after 1 to 2 days, along with a change in colony morphology from original rhizoid to rough, leading to 98% prevalence of the rough morphotype. Twenty-four isolates (including four isolates from no-phage treatments) were further characterized for phage resistance, antibiotic susceptibility, motility, adhesion, and biofilm formation, protease activity, whole-genome sequencing, and virulence in rainbow trout fry. The rough isolates arising in phage exposure were phage resistant with low virulence, whereas rhizoid isolates maintained phage susceptibility and high virulence. Gliding motility and protease activity were also related to the phage susceptibility. Observed mutations in phage-resistant isolates were mostly located in genes encoding the type IX secretion system, a component of the Bacteroidetes gliding motility machinery. However, not all phage-resistant isolates had mutations, indicating that phage resistance in F. columnare is a multifactorial process, including both genetic mutations and changes in gene expression. Phage resistance may not, however, be a challenge for development of phage therapy against F. columnare infections since phage resistance is associated with decreases in bacterial virulence. IMPORTANCE Phage resistance of infectious bacteria is a common phenomenon posing challenges for the development of phage therapy. Along with a growing world population and the need for increased food production, constantly intensifying animal farming has to face increasing problems of infectious diseases. Columnaris disease, caused by Flavobacterium columnare, is a worldwide threat for salmonid fry and juvenile farming. Without antibiotic treatments, infections can lead to 100% mortality in a fish stock. Phage therapy of columnaris disease would reduce the development of antibiotic-resistant bacteria and antibiotic loads by the aquaculture industry, but phage-resistant bacterial isolates may become a risk. However, phenotypic and genetic characterization of phage-resistant F. columnare isolates in this study revealed that they are less virulent than phage-susceptible isolates and thus not a challenge for phage therapy against columnaris disease. This is valuable information for the fish farming industry globally when considering phage-based prevention and curing methods for F. columnare infections.


Assuntos
Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Bacteriófagos/fisiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/citologia , Flavobacterium/patogenicidade , Flavobacterium/virologia , Animais , Proteínas de Bactérias/imunologia , Sistemas de Secreção Bacterianos/imunologia , Bacteriófagos/genética , Peixes , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/imunologia , Mutação , Virulência
5.
Antibiotics (Basel) ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810018

RESUMO

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.

6.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744913

RESUMO

Metazoans were proposed to host bacteriophages on their mucosal surfaces in a symbiotic relationship, where phages provide an external immunity against bacterial infections and the metazoans provide phages a medium for interacting with bacteria. However, scarce empirical evidence and model systems have left the phage-mucus interaction poorly understood. Here, we show that phages bind both to porcine mucus and to rainbow trout (Oncorhynchus mykiss) primary mucus, persist up to 7 days in the mucosa, and provide protection against Flavobacterium columnare Also, exposure to mucus changes the bacterial phenotype by increasing bacterial virulence and susceptibility to phage infections. This trade-off in bacterial virulence reveals ecological benefit of maintaining phages in the metazoan mucosal surfaces. Tests using other phage-bacterium pairs suggest that phage binding to mucus may be widespread in the biosphere, indicating its importance for disease, ecology, and evolution. This phenomenon may have significant potential to be exploited in preventive phage therapy.IMPORTANCE The mucosal surfaces of animals are habitat for microbes, including viruses. Bacteriophages-viruses that infect bacteria-were shown to be able to bind to mucus. This may result in a symbiotic relationship in which phages find bacterial hosts to infect, protecting the mucus-producing animal from bacterial infections in the process. Here, we studied phage binding on mucus and the effect of mucin on phage-bacterium interactions. The significance of our research is in showing that phage adhesion to mucus results in preventive protection against bacterial infections, which will serve as basis for the development of prophylactic phage therapy approaches. Besides, we also reveal that exposure to mucus upregulates bacterial virulence and that this is exploited by phages for infection, adding one additional layer to the metazoan-bacterium-phage biological interactions and ecology. This phenomenon might be widespread in the biosphere and thus crucial for understanding mucosal diseases, their outcome and treatment.


Assuntos
Bactérias/patogenicidade , Bactérias/virologia , Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno , Mucosa/microbiologia , Mucosa/virologia , Muco/virologia , Animais , Antibiose , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/terapia , Flavobacterium/patogenicidade , Flavobacterium/virologia , Muco/metabolismo , Terapia por Fagos , Ligação Proteica , Proteínas Virais/metabolismo
7.
Evol Appl ; 11(9): 1700-1714, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344637

RESUMO

Predicting the effects of global increase in temperatures on disease virulence is challenging, especially for environmental opportunistic bacteria, because pathogen fitness may be differentially affected by temperature within and outside host environment. So far, there is very little empirical evidence on the connections between optimal temperature range and virulence in environmentally growing pathogens. Here, we explored whether the virulence of an environmentally growing opportunistic fish pathogen, Flavobacterium columnare, is malleable to evolutionary changes via correlated selection on thermal tolerance. To this end, we experimentally quantified the thermal performance curves (TPCs) for maximum biomass yield of 49 F. columnare isolates from eight different geographic locations in Finland over ten years (2003-2012). We also characterized virulence profiles of these strains in a zebra fish (Danio rerio) infection model. We show that virulence among the strains increased over the years, but thermal generalism, and in particular tolerance to higher temperatures, was negatively associated with virulence. Our data suggest that temperature has a strong effect on the pathogen genetic diversity and therefore presumably also on disease dynamics. However, the observed increase in frequency and severity of F. columnare epidemics over the last decade cannot be directly linked to bacterial evolution due to increased mean temperature, but is most likely associated with factors related to increased length of growing season, or other time-dependent change in environment. Our study demonstrates that complex interactions between the host, the pathogen and the environment influence disease virulence of an environmentally growing opportunistic pathogen.

8.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659817

RESUMO

Understanding ecological and epidemiological factors driving pathogen evolution in contemporary time scales is a major challenge in modern health management. Pathogens that replicate outside the hosts are subject to selection imposed by ambient environmental conditions. Increased nutrient levels could increase pathogen virulence by pre-adapting for efficient use of resources upon contact to a nutrient rich host or by favouring transmission of fast-growing virulent strains. We measured changes in virulence and competition in Flavobacterium columnare, a bacterial pathogen of freshwater fish, under high and low nutrient levels. To test competition between strains in genotype mixtures, we developed a quantitative real-time PCR assay. We found that a virulent strain maintained its virulence and outcompeted less virulent strains independent of the nutrient level and resource renewal rate while a less virulent strain further lost virulence in chemostats under low nutrient level and over long-term serial culture under high nutrient level. Our results suggest that increased outside-host nutrient levels might maintain virulence in less virulent strains and increase their contribution to epidemics in aquaculture. The results highlight a need to further explore the role of resource in the outside-host environment in maintaining strain diversity and driving evolution of virulence among environmentally growing pathogens.


Assuntos
Evolução Biológica , Doenças dos Peixes/microbiologia , Flavobacterium/patogenicidade , Animais , Aquicultura , Peixes , Flavobacterium/genética , Flavobacterium/metabolismo , Genótipo , Virulência
9.
Sci Rep ; 7(1): 980, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428555

RESUMO

Studies on species' responses to climate change have focused largely on the direct effect of abiotic factors and in particular temperature, neglecting the effects of biotic interactions in determining the outcome of climate change projections. Many microbes rely on strong interference competition; hence the fitness of many pathogenic bacteria could be a function of both their growth properties and intraspecific competition. However, due to technical challenges in distinguishing and tracking individual strains, experimental evidence on intraspecific competition has been limited so far. Here, we developed a robust application of the high-resolution melting (HRM) assay to study head-to-head competition between mixed genotype co-cultures of a waterborne bacterial pathogen of fish, Flavobacterium columnare, at two different temperatures. We found that competition outcome in liquid cultures seemed to be well predicted by growth yield of isolated strains, but was mostly inconsistent with interference competition results measured in inhibition tests on solid agar, especially as no growth inhibition between strain pairs was detected at the higher temperature. These results suggest that, for a given temperature, the factors driving competition outcome differ between liquid and solid environments.


Assuntos
Peixes/microbiologia , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/genética , Animais , Mudança Climática , Aptidão Genética , Genótipo , Temperatura
10.
BMC Microbiol ; 15: 243, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26518592

RESUMO

BACKGROUND: Columnaris disease caused by Flavobacterium columnare is a serious problem in aquaculture, annually causing large economic losses around the world. Despite considerable research, the molecular epidemiology of F. columnare remains poorly understood. METHODS: We investigated the population structure and spatiotemporal changes in the genetic diversity of F. columnare population in Finland by using a multilocus sequence typing (MLST) and analysis (MLSA) based on DNA sequence variation within six housekeeping genes. A total of 83 strains of F. columnare were collected from eight different areas located across the country between 2003 and 2012. RESULTS: Partial sequencing of six housekeeping genes (trpB, tuf, atpA, rpoD, gyrB and dnaK) revealed eight sequence types and a moderate level of genetic diversity (H=0.460). Phylogenetic analysis of the concatenated protein-encoding gene sequence data (ca. 3,509 nucleotides) formed two lineages, which could be further divided into five clusters. All analysed F. columnare strains appeared to have a genetic origin distinct from that of another important fish pathogen form the genus Flavobacterium, F. psychrophilum. Although the value of the index of association between alleles, 0.292 (P<0.001), supports some degree of clonality for this species in Finland, recombination has introduced molecular diversity to the population almost three times more than mutation. CONCLUSION: The results suggest that Finnish F. columnare strains have an epidemic population structure followed by clonal expansion of successful genotypes. Our study with reproducible methodology and comparable results establishes a robust framework for the discrimination and phylogenetic analysis of F. columnare isolates, which will help to improve our understanding about geographic distribution and epidemiology of columnaris disease.


Assuntos
Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/classificação , Flavobacterium/genética , Variação Genética , Tipagem de Sequências Multilocus/métodos , Animais , Aquicultura , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Finlândia/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/isolamento & purificação , Genes Essenciais , Genótipo , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA