Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Food Res Int ; 187: 114458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763690

RESUMO

This study examines the antimicrobial and antibiofilm effectiveness of baicalin and carvacrol against Salmonella enterica ser. Typhimurium on food contact surfaces and chicken meat. The minimum inhibitory concentrations (MIC) for baicalin and carvacrol were found to be 100 µg/mL and 200 µg/mL, respectively, which aligns with findings from previous studies. The compounds exhibited a concentration-dependent decrease in microbial populations and biofilm formation. When used together, they displayed a remarkable synergistic effect, greatly augmenting their antibacterial activity. The assessment of food quality demonstrated that these treatments have no negative impact on the sensory characteristics of chicken meat. The impact of the structure on biofilms was observed through the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Confocal Laser Scanning Microscopy (CLSM), revealing disrupted biofilm architectures and decreased cell viability. Crucially, RT-PCR analysis revealed a marked downregulation of quorum sensing (luxS), virulence (hilA), and stress response (rpoS) genes, highlighting the multifaceted antimicrobial mechanism of action. This gene-specific suppression suggests a targeted disruption of bacterial communication and virulence pathways, offering insight into the comprehensive antibiofilm strategy. This provides further insight into the molecular mechanisms that contribute to their antibiofilm effects.


Assuntos
Antibacterianos , Biofilmes , Galinhas , Cimenos , Flavonoides , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Salmonella typhimurium , Biofilmes/efeitos dos fármacos , Cimenos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Flavonoides/farmacologia , Antibacterianos/farmacologia , Animais , Percepção de Quorum/efeitos dos fármacos , Carne/microbiologia , Monoterpenos/farmacologia , Microscopia Eletrônica de Varredura
2.
Int J Antimicrob Agents ; 64(1): 107194, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723695

RESUMO

OBJECTIVE: This study intended to isolate a Vibrio-particular phage from the natural environment, analyse its characteristics and genome sequence, and investigate its reduction effect on V. parahaemolyticus biofilm as a biocontrol agent in squid and mackerel. METHODS: Among 21 phages, phage CAU_VPP01, isolated from beach mud, was chosen for further experiments based on host range and EOP tests. When examining the reduction effect of phage CAU_VPP01 against Vibrio parahaemolyticus biofilms on surfaces (stainless steel [SS] and polyethylene terephthalate [PET]) and food surfaces (squid and mackerel). RESULTS: The phage showed the most excellent reduction effect at a multiplicity-of-infection (MOI) 10. Three-dimensional images acquired with confocal laser scanning microscopy (CLSM) analysis were quantified using COMSTAT, which showed that biomass, average thickness, and roughness coefficient decreased when treated with the phage. Colour and texture analysis confirmed that the quality of squid and mackerel was maintained after the phage treatment. Finally, a comparison of gene expression levels determined by qRT-PCR analysis showed that the phage treatment induced a decrease in the gene expression of flaA, vp0962, andluxS, as examples. CONCLUSION: This study indicated that Vibrio-specific phage CAU_VPP01 effectively controlled V. parahaemolyticus biofilms under various conditions and confirmed that the isolated phage could possibly be used as an effective biocontrol weapon in the seafood manufacturing industry.

3.
Food Res Int ; 175: 113671, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129021

RESUMO

Biofilm formation by Aeromonas hydrophila in the food industry poses significant challenges to food safety and quality. Therefore, this comprehensive review aimed to provide insights into the mechanisms and key factors influencing A. hydrophila biofilm formation. It explores the molecular processes involved in initial attachment, microcolony formation, and biofilm maturation; moreover, it concurrently examines the impact of intrinsic factors, including quorum sensing, cyclic-di-GMP, the efflux pump, and antibiotic resistance, as well as environmental conditions, such as temperature, nutrient availability, and osmotic pressure, on biofilm architecture and resilience. Furthermore, the article highlights the potential of bibliometric analysis as a promising method for conceptualizing the research landscape of and identifying knowledge gaps in A. hydrophila biofilm research. The findings underscore the requirement for focused interventions that prevent biofilm development and raise food sector safety. The consolidation of current information and incorporation of bibliometric analysis enhances existing understanding of A. hydrophila biofilm formation and offers insights for future research and control strategies within a food industry context.


Assuntos
Aeromonas hydrophila , Biofilmes , Percepção de Quorum , Bibliometria , Indústria Alimentícia
4.
Pharmaceutics ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004613

RESUMO

In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.

5.
Poult Sci ; 102(11): 103073, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774519

RESUMO

The use of phages as biocontrol agents against antibiotic-resistant strains of Salmonella spp. is gaining attention. This study aimed to isolate lytic bacteriophages specific for multidrug-resistant Salmonella enterica serovars Typhimurium; it also evaluated the bactericidal effect of isolated phages (STP-1, STP-2, STP-3, and STP-4) from sewage sample against S. Typhimurium as host strains. Moreover, a current study evaluated the efficacy of a bacteriophage cocktail against S. Typhimurium cocktail in chicken breast meat. The 4 phages were classified under the Caudoviricetes class by morphology characterization. On host range testing, they exhibited lytic activities against S. Typhimurium, S. Enteritidis, and S. Thompson. In the stability test, the phages exhibited resistance to heat (above 70°C for 1 h) and pH (strongly alkaline for 24 h). Additionally, the phages had comparable adsorption rates (approximately 80% adsorption in under 5 min). Additionally, the latent periods ranged from 30 to 50 min, with respective burst sizes of 31, 218, 197, and 218 PFU/CFU. In vitro, bacterial challenge demonstrated that at a multiplicity of infection (MOI) of 10, each phage consistently inhibited S. Typhimurium growth at 37°C for 24 h. In the food test, the phage cocktail (MOI = 1,000) reduced S. Typhimurium in artificially contaminated chicken breast meat stored at 4°C by 0.9 and 1.2 log CFU/g after 1 and 7 d, respectively. The results point toward a promising avenue for addressing the challenge of multidrug-resistant S. Typhimurium in the food industry through the use of recently discovered phages. Notably, the exploration of phage cocktails holds significant potential for combating S. Typhimurium in chicken breast products in the times ahead.


Assuntos
Bacteriófagos , Fagos de Salmonella , Animais , Galinhas , Salmonella typhimurium , Carne/microbiologia , Antibacterianos/farmacologia
6.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599629

RESUMO

Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.

7.
Biofouling ; 39(6): 617-628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37580896

RESUMO

Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.


Assuntos
Biofilmes , Salmonella enterica , Salmonella enterica/genética , Vorinostat/farmacologia , Virulência , Sorogrupo , Inibidores de Histona Desacetilases/farmacologia , Kentucky , Borracha , Percepção de Quorum , Poliésteres/farmacologia
8.
J Food Sci ; 88(9): 3935-3955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477280

RESUMO

Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.


Assuntos
Listeria monocytogenes , Óleos Voláteis , Mentha piperita , Óleos Voláteis/farmacologia , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Biofilmes
9.
Compr Rev Food Sci Food Saf ; 22(3): 1555-1596, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815737

RESUMO

Poultry is thriving across the globe. Chicken meat is the most preferred poultry worldwide, and its popularity is increasing. However, poultry also threatens human hygiene, especially as a fomite of infectious diseases caused by the major foodborne pathogens (Campylobacter, Salmonella, and Listeria). Preventing pathogenic bacterial biofilm is crucial in the chicken industry due to increasing food safety hazards caused by recurring contamination and the rapid degradation of meat, as well as the increased resistance of bacteria to cleaning and disinfection procedures commonly used in chicken processing plants. To address this, various innovative and promising strategies to combat bacterial resistance and biofilm are emerging to improve food safety and quality and extend shelf-life. In particular, natural compounds are attractive because of their potential antimicrobial activities. Natural compounds can also boost the immune system and improve poultry health and performance. In addition to phytochemicals, bacteriophages, nanoparticles, coatings, enzymes, and probiotics represent unique and environmentally friendly strategies in the poultry processing industry to prevent foodborne pathogens from reaching the consumer. Lactoferrin, bacteriocin, antimicrobial peptides, cell-free supernatants, and biosurfactants are also of considerable interest for their prospective application as natural antimicrobials for improving the safety of raw poultry meat. This review aims to describe the feasibility of these proposed strategies and provide an overview of recent published evidences to control microorganisms in the poultry industry, considering the human health, food safety, and economic aspects of poultry production.


Assuntos
Campylobacter , Aves Domésticas , Animais , Humanos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Carne/microbiologia , Bactérias
10.
Meat Sci ; 197: 109065, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481517

RESUMO

This study investigated the antimicrobial and antibiofilm efficacy of separate and combined treatments of Lactobacillus curvatus B67-produced postbiotic and the polyphenolic flavanol quercetin against Listeria monocytogenes and Salmonella enterica ser. Typhimurium. The antimicrobial potentiality of the postbiotic was chiefly associated with organic acids (e.g., lactic and acetic acids). At sub-minimum inhibitory concentration (1/2 MIC), the postbiotic and quercetin effectively reduced the pathogenic biofilm cells on processed pork sausage and meat-processing surfaces (e.g., stainless-steel and rubber). Moreover, the postbiotic exhibited strong residual antimicrobial efficacy over diverse pH and temperature ranges. In addition, the combination of postbiotic with quercetin increased the leakage of pathogenic intracellular metabolites (e.g., nucleic acids and protein) and inhibited pathogenic biofilm formation on both biotic and abiotic surfaces. Therefore, this study confirmed that lactic acid bacteria-derived postbiotic and plant-derived quercetin could be used as potential alternative bioprotective agents in the meat processing industry.


Assuntos
Listeria monocytogenes , Salmonella enterica , Lactobacillus , Quercetina/farmacologia , Conservação de Alimentos , Carne , Microbiologia de Alimentos
11.
Polymers (Basel) ; 14(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501695

RESUMO

Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria.

12.
Crit Rev Food Sci Nutr ; : 1-28, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066482

RESUMO

The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.

13.
Food Res Int ; 156: 111163, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651029

RESUMO

Foodborne pathogen-mediated biofilms in food processing environments are severe threats to human lives. In the interest of human and environmental safety, natural substances with antimicrobial properties and generally regarded as safe (GRAS) status are the futuristic disinfectants of the food industry. In this study, the efficacy of bioactive, soluble products (metabolic by-products) from lactic acid bacteria (LAB) and plant-derived essential oils (EO) were investigated as biocidal agents. The postbiotic produced by kimchi-derived Leuconostoc mesenteroides J.27 isolate was analyzed for its metabolic components to reveal its antimicrobial potential against three pathogenic microorganisms (Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli). Additionally, the efficacy of food-grade EO (eugenol and thymol, respectively) was also assessed in our study. Determination of the minimum inhibitory concentration (MIC) of postbiotic and EO against three tested pathogens revealed that the sub-MIC (0.5 MIC) of postbiotic and EO could efficiently inhibit the biofilm formation on both seafood (squid) and seafood-processing surfaces (rubber and low-density polyethylene plastic). Moreover, the polymerase chain reaction (PCR) analysis confirmed that the LAB J.27 isolate possesses bacteriocin- and enzyme-coding genes. The residual antibacterial activity of the produced postbiotic was maintained over a diverse pH range (pH 1-6) but was entirely abolished at neutral or higher pH values. However, the activity was unaffected by exposure to high temperatures (100 and 121 °C) and storage (30 days). Notably, the leakage of intracellular metabolites, damage to DNA, and the down-regulation of biofilm-associated gene expression in the pathogens increased significantly (p > 0.05) following the combination treatment of postbiotic with thymol compared to postbiotic with eugenol. Nonetheless, all in vitro results indicated the prospective use of combining Leu. mesenteroides J.27-derived postbiotic with both EO as a "green preservative" in the seafood industry to inhibit the formation of pathogenic microbial biofilms.


Assuntos
Anti-Infecciosos , Leuconostoc mesenteroides , Óleos Voláteis , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Escherichia coli , Eugenol , Humanos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Estudos Prospectivos , Pseudomonas aeruginosa , Alimentos Marinhos , Timol/farmacologia
14.
Polymers (Basel) ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215655

RESUMO

Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of chemical and physical methods. Various biological resources such as plants and their different parts, bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological resources have been reported. Plant extract contains various biomolecules, including flavonoids, terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents during the biosynthesis process. Similarly, microorganisms produce different primary and secondary metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized AgNPs have gained significant attention from the researchers because of their potential applications in different fields of biomedical science. The widest application of AgNPs is their bactericidal activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous human pathogens. Because of their small size and large surface area, AgNPs have the ability to easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and interfere with DNA replication as well as protein synthesis, and result in cell death. This paper provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms.

15.
Food Microbiol ; 102: 103906, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809938

RESUMO

The risk of salmonellosis is expected to increase with the rise in the consumption of poultry meat. The aim of this study was to investigate the combination treatment of peroxyacetic acid (PAA) or lactic acid (LA) with UV-C against Salmonella Enteritidis biofilms formed on food contact surface (stainless steel [SS], silicone rubber [SR], and ultra-high molecular weight polyethylene [UHMWPE]) and chicken skin. The biofilm on food contact surface and chicken skin was significantly decreased (P < 0.05) by combination treatment of PAA or LA with UV-C. Combination treatment of PAA (50-500 µg/mL) with UV-C (5 and 10 min) reduced 3.10-6.41 log CFU/cm2 and LA (0.5-2.0%) with UV-C (5 and 10 min) reduced 3.35-6.41 log CFU/cm2 of S. Enteritidis biofilms on food contact surface. Salmonella Enteritidis biofilms on chicken skin was reduced around 2 log CFU/g with minor quality changes in color and texture by combination treatment of PAA (500 µg/mL) or LA (2.0%) with UV-C (10 min). Additional reduction occurred on SS and UHMWPE by PAA or LA with UV-C, while only LA with UV-C caused additional reduction on chicken skin. Also, it was visualized that the biofilm on food contact surface and chicken skin was removed through field emission scanning electron microscopy (FESEM) and death of cells constituting the biofilm was confirmed through confocal laser scanning microscopy (CLSM). These results indicating that the combination treatment of PAA or LA with UV-C could be used for S. Enteritidis biofilm control strategy in poultry industry.


Assuntos
Manipulação de Alimentos , Ácido Láctico , Ácido Peracético , Aves Domésticas/microbiologia , Salmonella enteritidis , Animais , Biofilmes , Galinhas/microbiologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Ácido Láctico/farmacologia , Ácido Peracético/farmacologia , Aço Inoxidável
16.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870572

RESUMO

A Gram-stain-negative, aerobic and rod-shaped novel bacterial strain, designated MAH-26T, was isolated from rhizospheric soil of a pine tree. The colonies were orange coloured, smooth, spherical and 0.7-1.8 mm in diameter when grown on Reasoner's 2A (R2A) agar for 2 days. Strain MAH-26T was able to grow at 10-40 °C, at pH 6.0-9.0 and with 0-1.0 % NaCl. Cell growth occurred on nutrient agar, R2A agar, tryptone soya agar and Luria-Bertani agar. The strain gave positive results in oxidase and catalase tests. Strain MAH-26T was closely related to Flavihumibacter sediminis CJ663T and Parasegetibacter terrae SGM2-10T with a low 16S rRNA gene sequence similarity (92.8 and 92.9 %, respectively) and phylogenetic analysis indicated that the strain formed a distinct phylogenetic lineage from the members of the closely related genera of the family Chitinophagaceae. Strain MAH-26T has a draft genome size of 6 857 405 bp, annotated with 5173 protein-coding genes, 50 tRNA and two rRNA genes. The genomic DNA G+C content was 41.5 mol%. The predominant isoprenoid quinone was menaquinone 7. The major fatty acids were identified as iso-C15:0, iso-C15:1 G and iso-C17:0 3OH. On the basis of phylogenetic inference and phenotypic, chemotaxonomic and molecular properties, strain MAH-26T represents a novel species of a novel genus of the family Chitinophagaceae, for which the name Pinibacter aurantiacus gen. nov., sp. nov. is proposed. The type strain of Pinibacter aurantiacus is MAH-26T (=KACC 19749T=CGMCC 1.13701T).


Assuntos
Bacteroidetes/classificação , Filogenia , Pinus , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pigmentação , Pinus/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados
17.
Compr Rev Food Sci Food Saf ; 20(6): 5938-5964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626152

RESUMO

Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.


Assuntos
Biofilmes , Microbiologia de Alimentos , Manipulação de Alimentos , Indústria Alimentícia , Indústria de Processamento de Alimentos
18.
Food Res Int ; 148: 110595, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507740

RESUMO

Owing to their preservative and antimicrobial effects, postbiotics (metabolic byproducts of probiotics) are promising natural components for the food industry. Therefore, the present study aimed to investigate the efficacy of postbiotics collected from isolated Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2 against Listeria monocytogenes pathogens in planktonic cells, motility, and biofilm states. The analysis of the metabolite composition of the postbiotics revealed various organic acids, along with a few well-known bacteriocin-encoding genes with potential antimicrobial effects. Postbiotics maintained their residual antimicrobial activity over the pH range 1-6 but lost all activity at neutral pH (pH 7). Full antimicrobial activity (100%) was observed during heat treatment, even under the autoclaving condition.Minimum inhibitory concentration (MICs) of L. curvatus B.67 and L. plantarum M.2 against L. monocytogenes were 80 and 70 mg/mL, respectively. However, four sub-MICs of the postbiotics (1/2, 1/4, 1/8, and 1/16 MIC) were tested for inhibition efficacy against L. monocytogenes during different experiment in this study. Swimming motility, biofilm formation, and expression levels of target genes related to biofilm formation, virulence, and quorum-sensing were significantly inhibited with increasing postbiotics concentration. Postbiotics from L. plantarum M.2 exhibited a higher inhibitory effect than the postbiotics from L. curvatus B.67. Nonetheless, both these postbiotics from Lactobacillus spp. could be used as effective bio-interventions for controlling L. monocytogenes biofilm in the food industry.


Assuntos
Lactobacillus plantarum , Listeria monocytogenes , Biofilmes , Lactobacillus
19.
Mar Pollut Bull ; 172: 112927, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34526263

RESUMO

Gastroenteritis infections in humans are mainly associated with consumption of Vibrio parahaemolyticus contaminated shellfish, which causes health and economic loss. Virulence factor production, antibiotic resistance profile, and biofilm-forming capacity of Vibrio parahaemolyticus isolates on food and food contact surfaces at 30 °C were investigated to evaluate the antibiotic sensitivity and pathogenic level. Strains of V. parahaemolyticus were isolated from shellfish (e.g., Crassostrea gigas, Venerupis philippinarum, Mytilus coruscus, Anadara kagoshimensis) in Korea. When examined for 17 virulence factor-encoding genes, 53.3, 73.1, 87.1, 87.9, and 90.9% of the isolates were positive for genes encoding TDH, T6SS, T3SS1, T3SS2, and Type I pilus, respectively. All isolates showed resistance to vancomycin, tetracyclines, penicillin, nalidixic acid, and doxycycline, among 26 antibiotics tested, with most isolates resistant to kanamycin (93.5%), ampicillin (96.8%), clindamycin (96.8%), tobramycin (88.7%), amikacin (83.97%), and minocycline (80.7%). Biofilm formation, cell-cell attachment, and motility were high in most isolates. These findings may assist in monitoring the epidemics of the pathogen. Continuous monitoring could help to decrease V. parahaemolyticus infections and improve seafood safety.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Humanos , Alimentos Marinhos , Frutos do Mar , Virulência
20.
Food Res Int ; 147: 110461, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399461

RESUMO

Salmonella enterica and Shiga toxin-producing (or verotoxin-producing) Escherichia coli are major foodborne pathogens, posing substantial food safety risks. Due to the negative effects of chemical treatment against foodborne pathogens, the application of enzyme-based techniques is currently receiving great attention. Here, we evaluated the inhibitory properties of Flavourzyme, a commercial peptidase, against these two foodborne pathogens. We noticed 4.0 and 5.5 log inhibition of biofilm formation by S. Typhimurium and E. coli, respectively, while treated with sub-minimum inhibitory concentrations of Flavourzyme for 24 h. For both bacteria, the enzyme exhibited quorum-quenching activity, preventing autoinducer-2 production completely by E. coli. In addition, Flavourzyme significantly suppressed the relative expression levels of biofilm-forming, quorum sensing, and virulence regulatory genes as measured by qRT-PCR. Based on our results, we suggest the use of Flavourzyme as a preventive agent against foodborne pathogens that possibly acts by inhibiting bacterial self-defense mechanisms following disruption of cellular proteins. This finding may shed light on how enzymes can be applied as a novel weapon to control foodborne illnesses to ensure food safety and public health.


Assuntos
Salmonella typhimurium , Escherichia coli Shiga Toxigênica , Biofilmes , Endopeptidases , Percepção de Quorum , Salmonella typhimurium/genética , Escherichia coli Shiga Toxigênica/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA