Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(3): 162, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020303

RESUMO

The aim of this study was to quantify heavy metal pollution for environmental assessment of soil quality using a flexible approach based on multivariate analysis. The study was conducted using 241 soil samples collected from agricultural, urban and rangeland areas in northwestern Iran. The heavy metals causing soil pollution (SP) in the study area were determined. The efficiency of principal component analysis (PCA) and discriminate analysis (DA) were compared to identify the critical heavy metals causing SP. Fourteen soil pollution indices were developed using non-linear and linear scoring equations and different integration methods. The indices were validated using the integrated pollution and potential ecological risk indices and by comparing their ability to detect soil pollution risk levels. Chromium (Cr), lead (Pb), Zinc (Zn) and copper (Cu) were identified as the significant pollutant elements using PCA, and the main pollutant elements identified using DA comprised cadmium (Cd), Zn and Pb. DA yielded a better data set for indexing SP and indicated high pollution risks for Cd > Pb > Zn. Sources of heavy metals were reliably identified using PCA, variation assessment and interrelationship evaluation of soil variables. Cr, nickel (Ni) and cobalt (Co) were found to have geogenic sources, and anthropogenic sources controlled the accumulation of Pb, Zn, Cd and Cu in soil. Linear function and additive integration were the best scoring and integrating methods for indexing HMP. The multivariate analysis provided a reliable and rapid method for indexing and mapping soil HMP.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Poluição Ambiental , Irã (Geográfico) , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
3.
Environ Monit Assess ; 189(5): 214, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28409353

RESUMO

This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Resíduos Industriais/análise , Modelos Lineares , Análise Multivariada , Imagens de Satélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA