Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Rep ; 14(1): 13788, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877117

RESUMO

Root hair (RH) cells are important for the growth and survival of seedlings. They favor plant-microbe interactions and nutrients uptake. When invading the soil, RH cells have to penetrate a dense medium exhibiting a variety of physical properties, such as mechanical resistance, that impact the growth and survival of plants. Here we investigate the effect of the mechanical resistance of the culture medium on RH-physical and phenotypical parameters such as length, time, and speed of growth. We also analyze the impact of the environment on nuclear dynamics. We show that the RH growth rate and the nucleus speed decrease similarly as mechanical resistance increases while the time of growth of RH cells is invariable. Moreover, during RH growth, the nucleus-to-tip distance was found to decrease when the stiffness of the environment was increased. Along this line, using Latrunculin B treatment in liquid growth media, we could internally slow down RH growth to reach speeds similar to those observed in stiff solid media while the nucleus-to-tip distance was only slightly affected, supporting thus the idea of a specific effect of mechanical resistance of the environment on nucleus dynamics.


Assuntos
Núcleo Celular , Raízes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Meios de Cultura , Tiazolidinas/farmacologia , Plântula/crescimento & desenvolvimento , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
2.
Commun Biol ; 7(1): 184, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360973

RESUMO

At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.


Assuntos
Carcinoma in Situ , Fibroblastos , Humanos , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Esferoides Celulares , Técnicas de Cocultura , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia
3.
Cell Rep ; 42(4): 112405, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071535

RESUMO

Upon activation, vinculin reinforces cytoskeletal anchorage during cell adhesion. Activating ligands classically disrupt intramolecular interactions between the vinculin head and tail domains that bind to actin filaments. Here, we show that Shigella IpaA triggers major allosteric changes in the head domain, leading to vinculin homo-oligomerization. Through the cooperative binding of its three vinculin-binding sites (VBSs), IpaA induces a striking reorientation of the D1 and D2 head subdomains associated with vinculin oligomerization. IpaA thus acts as a catalyst producing vinculin clusters that bundle actin at a distance from the activation site and trigger the formation of highly stable adhesions resisting the action of actin relaxing drugs. Unlike canonical activation, vinculin homo-oligomers induced by IpaA appear to keep a persistent imprint of the activated state in addition to their bundling activity, accounting for stable cell adhesion independent of force transduction and relevant to bacterial invasion.


Assuntos
Proteínas de Bactérias , Shigella , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Actinas/metabolismo , Vinculina/metabolismo , Shigella/metabolismo , Ligação Proteica
4.
Cell Surf ; 9: 100104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36938503

RESUMO

Root hairs are cells from the root epidermis that grow as long tubular bulges perpendicular to the root. They can grow in a variety of mechanical or chemical environments. Their mechanical properties are mainly due to their stiff cell wall which also constitutes a physical barrier between the cell and its environment. Thus, it is essential to be able to quantify the cell wall mechanical properties and their adaptation to environmental cues. Here, we present a technique we developed to measure the Young's (elastic) modulus of the root hair cell wall. In essence, using custom-made glass microplates as cantilevers of calibrated stiffness, we are able to measure the force necessary to bend a single living root hair. From these experiments one can determine the stiffness and Young's modulus of the root hair cell wall.

5.
Methods Mol Biol ; 2600: 121-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587094

RESUMO

Plant's roots grow in soils of different rigidities. Understanding how the stiffness of the surrounding environment impacts growth and cell fate of roots and root hair cells is an important and open question. Here, we describe a simple method to setup a microfluidic-like system (MLS) to tackle this question. This system enables to grow plantlets during weeks in microfluidic chips filled with gels of controlled stiffness and to image them under a microscope from a few minutes up to a few days. Furthermore, MLS keeps the numerous benefits of microfluidic chips, such as high-resolution imaging, precise control of the geometry of growth, and standardization of the measurements. In sum, MLS enables one to quantitatively test, even on long time scales, the effect of the rigidity and the geometry of the environment on the growth of roots and root hair cells, including mechanotransduction to the nucleus.


Assuntos
Arabidopsis , Microfluídica , Microfluídica/métodos , Mecanotransdução Celular , Raízes de Plantas , Estruturas da Membrana Celular
6.
Cell Rep Methods ; 2(11): 100335, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452873

RESUMO

The immune synapse is the tight contact zone between a lymphocyte and a cell presenting its cognate antigen. This structure serves as a signaling platform and entails a polarization of intracellular components necessary to the immunological function of the cell. While the surface properties of the presenting cell are known to control the formation of the synapse, their impact on polarization has not yet been studied. Using functional lipid droplets as tunable artificial presenting cells combined with a microfluidic pairing device, we simultaneously observe synchronized synapses and dynamically quantify polarization patterns of individual B cells. By assessing how ligand concentration, surface fluidity, and substrate rigidity impact lysosome polarization, we show that its onset and kinetics depend on the local antigen concentration at the synapse and on substrate rigidity. Our experimental system enables a fine phenotyping of monoclonal cell populations based on their synaptic readout.


Assuntos
Gotículas Lipídicas , Microfluídica , Gotículas Lipídicas/metabolismo , Sinapses Imunológicas , Transdução de Sinais , Linfócitos B , Antígenos/metabolismo
7.
Nat Commun ; 13(1): 6059, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229487

RESUMO

Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.


Assuntos
Ciclina D1 , Integrinas , Divisão Celular , Ciclina D1/metabolismo , Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Phys Rev E ; 105(5-1): 054407, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706238

RESUMO

Tissues are generally subjected to external stresses, a potential stimulus for their differentiation or remodeling. While single-cell rheology has been extensively studied leading to controversial results about nonlinear response, mechanical tissue behavior under external stress is still poorly understood, in particular, the way individual cell properties translate at the tissue level. Herein, using magnetic cells we were able to form perfectly monitored cellular aggregates (magnetic molding) and to deform them under controlled applied stresses over a wide range of timescales and amplitudes (magnetic rheometer). We explore the rheology of these minimal tissue models using both standard assays (creep and oscillatory response) as well as an innovative broad spectrum solicitation coupled with inference analysis thus being able to determine in a single experiment the best rheological model. We find that multicellular aggregates exhibit a power-law response with nonlinearities leading to tissue stiffening at high stress. Moreover, we reveal the contribution of intracellular (actin network) and intercellular components (cell-cell adhesions) in this aggregate rheology.


Assuntos
Actinas , Adesão Celular , Reologia
9.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053529

RESUMO

A growing tumor is submitted to ever-evolving mechanical stress. Endoscopic procedures add additional constraints. However, the impact of mechanical forces on cancer progression is still debated. Herein, a set of magnetic methods is proposed to form tumor spheroids and to subject them to remote deformation, mimicking stent-imposed compression. Upon application of a permanent magnet, the magnetic tumor spheroids (formed from colon cancer cells or from glioblastoma cells) are compressed by 50% of their initial diameters. Such significant deformation triggers an increase in the spheroid proliferation for both cell lines, correlated with an increase in the number of proliferating cells toward its center and associated with an overexpression of the matrix metalloproteinase-9 (MMP-9). In vivo peritoneal injection of the spheroids made from colon cancer cells confirmed the increased aggressiveness of the compressed spheroids, with almost a doubling of the peritoneal cancer index (PCI), as compared with non-stimulated spheroids. Moreover, liver metastasis of labeled cells was observed only in animals grafted with stimulated spheroids. Altogether, these results demonstrate that a large compression of tumor spheroids enhances cancer proliferation and metastatic process and could have implications in clinical procedures where tumor compression plays a role.

10.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35029679

RESUMO

To investigate the role of mechanical constraints in morphogenesis and development, we have developed a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. The local shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the zebrafish embryo during gastrulation, our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.


Assuntos
Embrião não Mamífero/citologia , Imageamento Tridimensional/métodos , Resistência ao Cisalhamento , Animais , Agregação Celular , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Peixe-Zebra
11.
Plant J ; 108(2): 303-313, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562320

RESUMO

Root hairs (RHs) are tubular extensions of root epidermal cells that favour nutrient uptake and microbe interactions. RHs show a fast apical growth, constituting a unique single cell model system for analysing cellular morphodynamics. In this context, live cell imaging using microfluidics recently developed to analyze root development is appealing, although high-resolution imaging is still lacking to enable an investigation of the accurate spatiotemporal morphodynamics of organelles. Here, we provide a powerful coverslip based microfluidic device (CMD) that enables us to capture high resolution confocal imaging of Arabidopsis RH development with real-time monitoring of nuclear movement and shape changes. To validate the setup, we confirmed the typical RH growth rates and the mean nuclear positioning previously reported with classical methods. Moreover, to illustrate the possibilities offered by the CMD, we have compared the real-time variations in the circularity, area and aspect ratio of nuclei moving in growing and mature RHs. Interestingly, we observed higher aspect ratios in the nuclei of mature RHs, correlating with higher speeds of nuclear migration. This observation opens the way for further investigations of the effect of mechanical constraints on nuclear shape changes during RH growth and nuclear migration and its role in RH and plant development.


Assuntos
Arabidopsis/citologia , Núcleo Celular/fisiologia , Microfluídica/instrumentação , Microfluídica/métodos , Raízes de Plantas/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dispositivos Lab-On-A-Chip , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Vegetais , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Imagem com Lapso de Tempo
12.
Biomaterials ; 275: 120903, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102526

RESUMO

Cells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single-cell parallel plates rheometer to probe whole-cell mechanics and optical tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Citoesqueleto , Humanos , Pinças Ópticas , Reologia
13.
J Nanobiotechnology ; 19(1): 117, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902616

RESUMO

BACKGROUND: The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells' mechanical properties remains poorly understood. RESULTS: Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. CONCLUSIONS: Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.


Assuntos
Nanopartículas de Magnetita , Nanopartículas/metabolismo , Nanotecnologia/métodos , Análise de Célula Única/métodos , Membrana Celular , Citoesqueleto/metabolismo , Elasticidade , Endocitose , Endossomos/metabolismo , Humanos , Lisossomos , Microscopia Eletrônica de Transmissão , Reologia , Resistência ao Cisalhamento , Estresse Mecânico
14.
Curr Opin Plant Biol ; 57: 155-163, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33128898

RESUMO

Beyond its biochemical nature, the nucleus is also a physical object. There is accumulating evidence that its mechanics plays a key role in gene expression, cytoskeleton organization, and more generally in cell and developmental biology. Building on data mainly obtained from the animal literature, we show how nuclear mechanics may orchestrate development and gene expression. In other words, the nucleus may play the additional role of a mechanical rheostat. Although data from plant systems are still scarce, we pinpoint recent advances and highlight some differences with animal systems. Building on this survey, we propose a list of prospects for future research in plant nuclear mechanotransduction and development.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Animais , Núcleo Celular/genética , Estresse Mecânico
15.
Curr Biol ; 30(11): 2013-2025.e3, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330420

RESUMO

In animal single cells in culture, nuclear geometry and stiffness can be affected by mechanical cues, with important consequences for chromatin status and gene expression. This calls for additional investigation into the corresponding physiological relevance in a multicellular context and in different mechanical environments. Using the Arabidopsis root as a model system, and combining morphometry and micro-rheometry, we found that hyperosmotic stress decreases nuclear circularity and size and increases nuclear stiffness in meristematic cells. These changes were accompanied by enhanced expression of touch response genes. The nuclear response to hyperosmotic stress was rescued upon return to iso-osmotic conditions and could even lead to opposite trends upon hypo-osmotic stress. Interestingly, nuclei in a mutant impaired in the functions of the gamma-tubulin complex protein 3 (GCP3) interacting protein (GIP)/MZT1 proteins at the nuclear envelope were almost insensitive to such osmotic changes. The gip1gip2 mutant exhibited constitutive hyperosmotic stress response with stiffer and deformed nuclei, as well as touch response gene induction. The mutant was also resistant to lethal hyperosmotic conditions. Altogether, we unravel a stereotypical geometric, mechanical, and genetic nuclear response to hyperosmotic stress in plants. Our data also suggest that chromatin acts as a gel that stiffens in hyperosmotic conditions and that the nuclear-envelope-associated protein GIPs act as negative regulators of this response.


Assuntos
Arabidopsis/citologia , Núcleo Celular/fisiologia , Células Vegetais/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Pressão Osmótica , Raízes de Plantas/citologia
16.
Cell Mol Life Sci ; 77(24): 5259-5279, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32040695

RESUMO

Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins ß-arrestins and G proteins. Depletion of ß-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that ß-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-ß-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-ß-arrestin complex to the plasma membrane, ß-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient ß-arrestin and by a specific inhibitor of ß-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of ß-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/genética , Complexos Multiproteicos/genética , Neoplasias/genética , beta-Arrestinas/genética , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Membrana Celular/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Ligação Proteica/genética , Domínios Proteicos/genética , Receptor Tipo 1 de Angiotensina/genética , Receptores Acoplados a Proteínas G/genética , Vasopressinas/farmacologia
17.
Nature ; 563(7730): 192-194, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30390069
18.
Nat Methods ; 15(7): 491-498, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915189

RESUMO

The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.


Assuntos
Análise de Célula Única/métodos , Fenômenos Biomecânicos , Adesão Celular , Movimento Celular , Humanos , Dispositivos Lab-On-A-Chip , Células MCF-7 , Estresse Mecânico
19.
Sci Rep ; 8(1): 5995, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662083

RESUMO

During embryonic development, most organs are in a state of mechanical compression because they grow in a confined and limited amount of space within the embryo's body; the early gut is an exception because it physiologically herniates out of the coelom. We demonstrate here that physiological hernia is caused by a tensile force transmitted by the vitelline duct on the early gut loop at its attachment point at the umbilicus. We quantify this tensile force and show that applying tension for 48 h induces stress-dependent elongational growth of the embryonic gut in culture, with an average 90% length increase (max: 200%), 65% volume increase (max: 160%), 50% dry mass increase (max: 100%), and 165% cell number increase (max: 300%); this mechanical cue is required for organ growth as guts not subject to tension do not grow. We demonstrate that growth results from increased cell proliferation when tension is applied. These results outline the essential role played by mechanical forces in shaping and driving the proliferation of embryonic organs.


Assuntos
Trato Gastrointestinal/embriologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Proliferação de Células , Embrião de Galinha , Motilidade Gastrointestinal , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/fisiologia , Técnicas de Cultura de Órgãos , Tamanho do Órgão , Resistência à Tração
20.
Biol Cell ; 110(4): 77-90, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29388701

RESUMO

BACKGROUND INFORMATION: The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies. RESULTS: In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant. CONCLUSIONS: We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity. SIGNIFICANCE: Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue.


Assuntos
Citoplasma/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Mioblastos/citologia , Estresse Mecânico , Animais , Células Cultivadas , Citoesqueleto/metabolismo , Desmina/genética , Elasticidade , Humanos , Camundongos , Músculo Esquelético , Mutação , Mioblastos/metabolismo , Reologia , Fibras de Estresse
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA