Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Learn Mem ; 31(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38862170

RESUMO

Drosophila larvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larval Drosophila for their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning in Drosophila larvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larval Drosophila.


Assuntos
Drosophila , Larva , Animais , Drosophila/fisiologia , Cognição/fisiologia , Corpos Pedunculados/fisiologia , Inibição Psicológica , Condicionamento Clássico/fisiologia , Encéfalo/fisiologia , Aprendizagem por Associação/fisiologia , Drosophila melanogaster/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA