Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JAMA Netw Open ; 7(5): e2412854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809557

RESUMO

Importance: Early menarche is associated with adverse health outcomes. Trends toward earlier menarche have been observed in the US, but data remain limited on differences by sociodemographic factors and body mass index (BMI). Time from menarche to cycle regularity is another understudied early-life characteristic with health implications. Objectives: To evaluate the temporal trends and disparities in menarche and time to regularity and explore early-life BMI as a mediator. Design, Setting, and Participants: This ongoing cohort study enrolled participants from an ongoing mobile application-based US cohort from November 14, 2019, to March 20, 2023. Exposures: Birth year (categorized as 1950-1969, 1970-1979, 1980-1989, 1990-1999, and 2000-2005). Main Outcomes and Measures: Main outcomes were age at menarche and time to regularity, which were self-recalled at enrollment. In addition, early (aged <11 years), very early (aged <9 years), and late (aged ≥16 years) age at menarche was assessed. Results: Among the 71 341 female individuals who were analyzed (mean [SD] age at menarche, 12.2 [1.6] years; 2228 [3.1%] Asian, 3665 [5.1%] non-Hispanic Black, 4918 [6.9%] Hispanic, 49 518 [69.4%] non-Hispanic White, and 8461 [11.9%] other or multiple races or ethnicities), 5223 were born in 1950 to 1969, 12 226 in 1970 to 1979, 22 086 in 1980 to 1989, 23 894 in 1990 to 1999, and 7912 in 2000 to 2005. The mean (SD) age at menarche decreased from 12.5 (1.6) years in 1950 to 1969 to 11.9 (1.5) years in 2000 to 2005. The number of individuals experiencing early menarche increased from 449 (8.6%) to 1223 (15.5%), the number of individuals experiencing very early menarche increased from 31 (0.6%) to 110 (1.4%), and the number of individuals experiencing late menarche decreased from 286 (5.5%) to 137 (1.7%). For 61 932 participants with reported time to regularity, the number reaching regularity within 2 years decreased from 3463 (76.3%) to 4075 (56.0%), and the number not yet in regular cycles increased from 153 (3.4%) to 1375 (18.9%). The magnitude of the trend toward earlier menarche was greater among participants who self-identified as Asian, non-Hispanic Black, or other or multiple races (vs non-Hispanic White) (P = .003 for interaction) and among participants self-rated with low (vs high) socioeconomic status (P < .001 for interaction). Within a subset of 9865 participants with data on BMI at menarche, exploratory mediation analysis estimated that 46% (95% CI, 35%-61%) of the temporal trend in age at menarche was explained by BMI. Conclusions and Relevance: In this cohort study of 71 341 individuals in the US, as birth year increased, mean age at menarche decreased and time to regularity increased. The trends were stronger among racial and ethnic minority groups and individuals of low self-rated socioeconomic status. These trends may contribute to the increase in adverse health outcomes and disparities in the US.


Assuntos
Menarca , Humanos , Menarca/fisiologia , Feminino , Estados Unidos , Adolescente , Criança , Índice de Massa Corporal , Estudos de Coortes , Adulto , Ciclo Menstrual/fisiologia , Fatores Etários , Adulto Jovem , Fatores de Tempo
2.
NPJ Digit Med ; 5(1): 165, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323769

RESUMO

COVID-19 vaccination may be associated with change in menstrual cycle length following vaccination. We estimated covariate-adjusted differences in mean cycle length (MCL), measured in days, between pre-vaccination cycles, vaccination cycles, and post-vaccination cycles within vaccinated participants who met eligibility criteria in the Apple Women's Health Study, a longitudinal mobile-application-based cohort of people in the U.S. with manually logged menstrual cycles. A total of 9652 participants (8486 vaccinated; 1166 unvaccinated) contributed 128,094 cycles (median = 10 cycles per participant; inter-quartile range: 4-22). Fifty-five percent of vaccinated participants received Pfizer-BioNTech's mRNA vaccine, 37% received Moderna's mRNA vaccine, and 8% received the Johnson & Johnson/Janssen (J&J) vaccine. COVID-19 vaccination was associated with a small increase in MCL for cycles in which participants received the first dose (0.50 days, 95% CI: 0.22, 0.78) and cycles in which participants received the second dose (0.39 days, 95% CI: 0.11, 0.67) of mRNA vaccines compared with pre-vaccination cycles. Cycles in which the single dose of J&J was administered were, on average, 1.26 days longer (95% CI: 0.45, 2.07) than pre-vaccination cycles. Post-vaccination cycles returned to average pre-vaccination length. Estimated follicular phase vaccination was associated with increased MCL in cycles in which participants received the first dose (0.97 days, 95% CI: 0.53, 1.42) or the second dose (1.43 days, 95% CI: 1.06, 1.80) of mRNA vaccines or the J&J dose (2.27 days, 95% CI: 1.04, 3.50), compared with pre-vaccination cycles. Menstrual cycle change following COVID-19 vaccination appears small and temporary and should not discourage individuals from becoming vaccinated.

3.
medRxiv ; 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35860226

RESUMO

Background: COVID-19 vaccination may be associated with change in menstrual cycle length following vaccination. Methods: We conducted a longitudinal analysis within a subgroup of 14,915 participants in the Apple Women's Health Study (AWHS) who enrolled between November 2019 and December 2021 and met the following eligibility criteria: were living in the U.S., met minimum age requirements for consent, were English speaking, actively tracked their menstrual cycles, and responded to the COVID-19 Vaccine Update survey. In the main analysis, we included tracked cycles recorded when premenopausal participants were not pregnant, lactating, or using hormonal contraceptives. We used conditional linear regression and multivariable linear mixed-effects models with random intercepts to estimate the covariate-adjusted difference in mean cycle length, measured in days, between pre-vaccination cycles, cycles in which a vaccine was administered, and post-vaccination cycles within vaccinated participants, and between vaccinated and unvaccinated participants. We further compared associations between vaccination and menstrual cycle length by the timing of vaccine dose within a menstrual cycle (i.e., in follicular or luteal phase). We present Bonferroni-adjusted 95% confidence intervals to account for multiple comparisons. Results: A total of 128,094 cycles (median = 10 cycles per participant; interquartile range: 4-22) from 9,652 participants (8,486 vaccinated; 1,166 unvaccinated) were included. The average within-individual standard deviation in cycle length was 4.2 days. Fifty-five percent of vaccinated participants received Pfizer-BioNTech's mRNA vaccine, 37% received Moderna's mRNA vaccine, and 7% received the Johnson & Johnson/Janssen vaccine (J&J). We found no evidence of a difference between mean menstrual cycle length in the unvaccinated and vaccinated participants prior to vaccination (0.24 days, 95% CI: -0.34, 0.82).Among vaccinated participants, COVID-19 vaccination was associated with a small increase in mean cycle length (MCL) for cycles in which participants received the first dose (0.50 days, 95% CI: 0.22, 0.78) and cycles in which participants received the second dose (0.39 days, 95% CI: 0.11, 0.67) of mRNA vaccines compared with pre-vaccination cycles. Cycles in which the single dose of J&J was administered were, on average, 1.26 days longer (95% CI: 0.45, 2.07) than pre-vaccination cycles. Post-vaccination cycles returned to average pre-vaccination length. Estimates for pre vs post cycle lengths were 0.14 days (95% CI: -0.13, 0.40) in the first cycle following vaccination, 0.13 days (95% CI: -0.14, 0.40) in the second, -0.17 days (95% CI: -0.43, 0.10) in the third, and -0.25 days (95% CI: -0.52, 0.01) in the fourth cycle post-vaccination. Follicular phase vaccination was associated with an increase in MCL in cycles in which participants received the first dose (0.97 days, 95% CI: 0.53, 1.42) or the second dose (1.43 days, 95% CI: 1.06, 1.80) of mRNA vaccines or the J&J dose (2.27 days, 95% CI: 1.04, 3.50), compared with pre-vaccination cycles. Conclusions: COVID-19 vaccination was associated with an immediate short-term increase in menstrual cycle length overall, which appeared to be driven by doses received in the follicular phase. However, the magnitude of this increase was small and diminished in each cycle following vaccination. No association with cycle length persisted over time. The magnitude of change associated with vaccination was well within the natural variability in the study population. Menstrual cycle change following COVID-19 vaccination appears small and temporary and should not discourage individuals from becoming vaccinated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA