Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lasers Med Sci ; 15: e21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188931

RESUMO

Introduction: Photobiomodulation (PBM) and Akkermansia muciniphila have been shown to be effective in improving inflammatory conditions with positive effects on increasing the population of anti-inflammatory M2 macrophages (MQs). In this study, gliadin-stimulated THP-1 derived MQs were treated with A. muciniphila and PBM to evaluate their effects on promoting the polarization of M2 MQs. Methods: The human monocyte cell line (THP-1) was differentiated to MQs. MQs were stimulated with 200 µg/mL gliadin for 24 hours and then treated with PBM 810 nm alone and in combination with A. muciniphila for the following 24 hours to evaluate their effects on MQs polarization. THP-1 derived MQs were also treated with PBM and A. muciniphila to evaluate their effects on non-stimulated MQs. CD11b, CD80, and CD206 levels were evaluated by using the flow cytometry technique. Moreover, the expression of some M1 and M2-related cytokines was determined. Results: PBM therapy of gliadin-stimulated MQs decreased IL-6 and increased TGF-ß, IL-10 and TNF-α expression compared with gliadin exposed MQs. PBM along with A. muciniphila treatment induced IL-6, TNF-α, and IL-10 expression in MQs in comparison to the untreated group. It also elevated TGF-ß, IL-10 and TNF-α levels in gliadin-triggered MQs in comparison to gliadin-stimulated MQ cells. Conclusion: The result of this study showed the potential of PBMT and A. muciniphila for modulating inflammatory responses and MQs polarization. This may open new perspectives to find possible therapeutic targets for celiac diseases.

2.
Cell Biochem Biophys ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023679

RESUMO

The escalating global threat of antibiotic resistance underscores the urgent need for innovative antimicrobial strategies. This review explores the cutting-edge applications of nanotechnology in combating bacterial infections, addressing a critical healthcare challenge. We critically assess the antimicrobial properties and mechanisms of diverse nanoparticle systems, including liposomes, polymeric micelles, solid lipid nanoparticles, dendrimers, zinc oxide, silver, and gold nanoparticles, as well as nanoencapsulated essential oils. These nanomaterials offer distinct advantages, such as enhanced drug delivery, improved bioavailability, and efficacy against antibiotic-resistant strains. Recent advancements in nanoparticle synthesis, functionalization, and their synergistic interactions with conventional antibiotics are highlighted. The review emphasizes biocompatibility considerations, stressing the need for rigorous safety assessments in nanomaterial applications. By synthesizing current knowledge and identifying emerging trends, this review provides crucial insights for researchers and clinicians aiming to leverage nanotechnology for next-generation antimicrobial therapies. The integration of nanotechnology represents a promising frontier in combating infectious diseases, underscoring the timeliness and imperative of this comprehensive analysis.

3.
Gastroenterol Hepatol Bed Bench ; 17(2): 132-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994510

RESUMO

Gluten is a complex mixture of hundreds of related proteins, with the two major groups being gliadin and glutenin. Gliadin primarily affects the viscosity of dough, while glutenin contributes to its strength. Nowadays, there is evidence suggesting an increase in gluten exposure due to advancements in cereal technology. Consumption of gluten can lead to development of gluten-related disorders (GRDs) in susceptible individuals. Some GRDs have been strongly associated with an increased risk of developing certain types of cancer. Colorectal cancer and lymphoma are among the most commonly reported malignancies associated with GRDs. Dietary factors, including gluten intake, have been recognized as significant modifiable risk factors for the development of digestive system cancers. The present study aimed to collect current information on the effect of gluten on the incidence of cancer in the general population and among GRDs patients. Protein-Protein Interaction (PPI) Network analysis of common genes between celiac disease (CD) and cancer was also conducted.

4.
J Diabetes Metab Disord ; 23(1): 1329-1336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932832

RESUMO

Purpose: Celiac disease (CD) is a chronic autoimmune disorder with a common genetic pathogenesis with type 1 diabetes (T1D). This study aimed to investigate the immune regulation in patients with both CD and T1D. Methods: A total of 29 CD patients, 29 T1D patients, and 16 patients with both CD and T1D, along with 30 healthy controls (HCs) were included. The mRNA expression levels of TNF-α, IL-6, IL-2, and CTLA4 were evaluated in peripheral blood samples. Results: The results showed that in patients with CD, T1D and CD/T1D, TNF-α mRNA levels were significantly increased (P = 0.0009, 0.0001, and 0.008, respectively), while CTLA4 mRNA levels were significantly decreased in them compared to the control group (P = 0.0009, 0.0001, and 0.004, respectively). IL-2 mRNA expression levels were also significantly higher in CD (P = 0.01) and comorbid CD/T1D (P = 0.01) patients than in the control group. There was no significant difference in terms of IL-6 expression between studied groups (P > 0.05). Conclusions: TNF-α mRNA exhibited potential diagnostic value for distinguishing CD, T1D, and comorbid CD/T1D patients from HCs. These findings contribute to our understanding of the shared genetic factors and potential mechanisms underlying CD and T1D, which can aid in improved diagnostic methods and treatment approaches for these conditions.

5.
Tissue Barriers ; : 2374628, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38944818

RESUMO

Celiac Disease (CD) is the most common hereditarily-based food intolerance worldwide and a chronic inflammatory condition. The current standard treatment for CD involves strict observance and compliance with a gluten-free diet (GFD). However, maintaining a complete GFD poses challenges, necessitating the exploration of alternative therapeutic approaches. Nutraceuticals, bioactive products bridging nutrition and pharmaceuticals, have emerged as potential candidates to regulate pathways associated with CD and offer therapeutic benefits. Despite extensive research on nutraceuticals in various diseases, their role in CD has been relatively overlooked. This review proposes comprehensively assessing the potential of different nutraceuticals, including phytochemicals, fatty acids, vitamins, minerals, plant-based enzymes, and dietary amino acids, in managing CD. Nutraceuticals exhibit the ability to modulate crucial CD pathways, such as regulating gluten fragment accessibility and digestion, intestinal barrier function, downregulation of tissue transglutaminase (TG2), intestinal epithelial morphology, regulating innate and adaptive immune responses, inflammation, oxidative stress, and gut microbiota composition. However, further investigation is necessary to fully elucidate the underlying cellular and molecular mechanisms behind the therapeutic and prophylactic effects of nutraceuticals for CD. Emphasizing such research would contribute to future developments in CD therapies and interventions.

6.
Tissue Barriers ; : 2347766, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695199

RESUMO

Celiac disease (CD) is characterized by the disruption of the intestinal barrier integrity and alterations in the microbiota composition. This study aimed to evaluate the changes in the fecal microbiota profile and mRNA expressions of intracellular junction-related genes in pediatric patients with CD compared to healthy controls (HCs). Thirty treated CD patients, 10 active CD, and 40 HCs were recruited. Peripheral blood (PB) and fecal samples were collected. Microbiota analysis was performed using quantitative real-time PCR (qPCR) test. The mRNA expressions of ZO-1, occludin, ß-catenin, E-cadherin, and COX-2 were also evaluated. In active and treated CD patients, the PB expression levels of ZO-1 (p = 0.04 and 0.002, respectively) and ß-catenin (p = 0.006 and 0.02, respectively) were lower than in HCs. PB Occludin's level was upregulated in both active and treated CD patients compared to HCs (p = 0.04 and 0.02, respectively). However, PB E-cadherin and COX-2 expression levels and fecal mRNA expressions of ZO-1, occludin, and COX-2 did not differ significantly between cases and HCs (P˃0.05). Active CD patients had a higher relative abundance of the Firmicutes (p = 0.04) and Actinobacteria (p = 0.03) phyla compared to treated subjects. The relative abundance of Veillonella (p = 0.04) and Staphylococcus (p = 0.01) genera was lower in active patients in comparison to HCs. Researchers should explore the precise impact of the gut microbiome on the molecules and mechanisms involved in intestinal damage of CD. Special attention should be given to Bifidobacteria and Enterobacteriaceae, as they have shown a significant correlation with the expression of tight junction-related genes.

8.
Tissue Barriers ; : 2342619, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618691

RESUMO

The interplay between fatty acids (FAs) and celiac disease (CD) is a burgeoning field of research with significant implications for understanding the pathophysiology and potential therapeutic avenues for this autoimmune disorder. CD, triggered by gluten consumption in susceptible individuals, presents with a range of intestinal and extra-intestinal symptoms impacting various bodily functions. The disruption of intestinal tight junctions (TJs) by gluten proteins leads to increased gut permeability and subsequent inflammatory responses mediated by T-cells. FAs, crucial components of cell membranes, play diverse roles in inflammation and immune regulation. In fact, FAs have been shown to modulate inflammatory processes through various mechanisms. Studies have highlighted alterations in FA profiles in individuals with CD, indicating potential implications for disease pathogenesis and micronutrient deficiencies. Moreover, the exploration of FAs as biomarkers for CD diagnosis offers promising avenues for future research and therapeutic interventions. Understanding the intricate relationship between FAs and CD could lead to novel approaches in managing this complex autoimmune disorder. Therefore, this review article aims to provide an overview of the connection between FAs and inflammation in CD.

9.
Clin Exp Med ; 24(1): 34, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340186

RESUMO

Celiac disease (CD) is a chronic immune-mediated inflammatory disease of the small intestine caused by aberrant immune responses to consumed gluten proteins. CD is diagnosed by a combination of the patients reported symptoms, serologic and endoscopic biopsy evaluation of the small intestine; and adherence to a strict gluten-free diet (GFD) is considered the only available therapeutic approach for this disorder. Novel approaches need to be considered for finding new biomarkers to help this disorder diagnosis and finding a new alternative therapeutic method for this group of patients. Metabolomics and lipidomics are powerful tools to provide highly accurate and sensitive biomarkers. Previous studies indicated a metabolic fingerprint for CD deriving from alterations in gut microflora or intestinal permeability, malabsorption, and energy metabolism. Moreover, since CD is characterized by increased intestinal permeability and due to the importance of membrane lipid components in controlling barrier integrity, conducting lipidomics studies in this disorder is of great importance. In the current study, we tried to provide a critical overview of metabolomic and lipidomic changes in CD.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/patologia , Lipidômica , Glutens , Intestino Delgado/patologia , Biomarcadores
10.
Asian Pac J Cancer Prev ; 25(2): 647-652, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415552

RESUMO

OBJECTIVE: Celiac disease (CD) and colorectal cancer (CRC) are distinct gastrointestinal conditions with a debated association. This study aimed to evaluate the mRNA expression of CD4 and Foxp3 in tissue specimens of CD and CRC patients. The findings can provide valuable insights into the complex connection between these different gastrointestinal conditions. METHODS: Tissue samples from 100 CRC patients, 50 CD patients, and 50 healthy controls (HCs) were collected. RNA extraction, cDNA synthesis, and quantitative real-time PCR were performed. Statistical analysis was conducted using ANOVA and Pearson's correlation test. RESULT: CD4 mRNA expression was significantly higher in CRC patients compared to CD patients and HCs (P<0.0001 for both). Foxp3 mRNA expression was significantly higher in CD patients compared to CRC patients and HCs (P<0.0001 for both). Clinicopathological characteristics did not correlate significantly with gene expression levels. CONCLUSION: This study reveals differential expression patterns of CD4 and Foxp3 mRNA in CRC and CD patients. Upregulated CD4 mRNA suggests its potential role in promoting tumor growth, while increased Foxp3 mRNA expression may reflect an immunosuppressive mechanism in CD pathogenesis. These findings provide insights into the molecular and immunological aspects of CRC and CD, warranting further studies for potential therapeutic strategies.


Assuntos
Doença Celíaca , Neoplasias Colorretais , Humanos , Doença Celíaca/genética , Doença Celíaca/complicações , Doença Celíaca/patologia , Neoplasias Colorretais/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Estudos de Casos e Controles , Projetos de Pesquisa , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Immun Inflamm Dis ; 12(2): e1186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353316

RESUMO

BACKGROUND: Celiac disease (CD) is a chronic autoimmune disorder characterized by an abnormal immune response to gluten, a protein found in wheat, barley, and rye. It is well established that the integrity of epithelial tight junctions (TJs) and adherens junctions (AJs) plays a crucial role in the pathogenesis of CD. These junctional complexes contribute to the apical-basal polarity of the intestinal epithelial cells, which is crucial for their proper functioning. METHODS: Sixty CD subjects, and 50 controls were enrolled in the current study. Mucosal samples were obtained from the distal duodenum, total RNA was extracted and complementary DNA was synthesized. The relative expression levels of the desired genes were evaluated by quantitative real-time polymerase chain reaction based on ΔΔCt method. The gene-gene interaction network was also constructed using GeneMANIA. RESULTS: CRB3 (p = .0005), LKB1 (p < .0001), and SCRIB (p = .0005) had lower expression in CD patients compared to controls, while PRKCZ expression did not differ between groups (p > .05). CRB3 represented a significant diagnostic value for differentiating CD patients from the control group (p = .02). CONCLUSION: The aim of the current study was to evaluate the changes in the mRNA expression levels of SCRIB, PRKCZ, LKB1, and CRB3 genes in the small intestinal biopsy samples of CD patients in comparison to the healthy control subjects. Our data uncover the importance of polarity-related genes (especially CRB3) in CD pahtomechanism, that may facilitate the planning of the future studies looking for finding innovative diagnostic and therapeutic strategies for CD.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/genética , Glutens/metabolismo , Duodeno/metabolismo , Duodeno/patologia , Biópsia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Mol Histol ; 55(1): 15-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165564

RESUMO

Intestinal epithelium is a dynamic cellular layer that lines the small-bowel and makes a relatively impenetrable barrier to macromolecules. Intestinal epithelial cell polarity is crucial in coordinating signalling pathways within cells and mainly regulated by three conserved polarity protein complexes, the Crumbs (Crb) complex, partitioning defective (PAR) complex, and Scribble (Scrib) complex. Polarity proteins regulate the proper establishment of the intercellular junctional complexes including tight junctions (TJs), adherence junctions (AJs), and desmosomes which hold epithelial cells together and play a major role in maintaining intestinal barrier integrity. Impaired intestinal epithelial cell polarity and barrier integrity result in irreversible immune responses, the host- microbial imbalance and intestinal inflammatory disorders. Disassembling the epithelial tight junction and augmented paracellular permeability is a conspicuous hallmark of celiac disease (CD) pathogenesis. There are several dietary components that can improve intestinal integrity and function. The aim of this review article is to summarize current information about the association of polarity proteins and AJC damages with pathogenesis of CD.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Intestinos , Junções Íntimas/metabolismo
13.
Diseases ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38248364

RESUMO

Amino acids (AAs) and vitamin imbalances are observed in celiac disease (CD). This study evaluated the plasma profile of vitamin A and AAs and the expression level of IL-2, IL-4, IL-10, IL-12 and TGFß in CD patients. A total of 60 children and adults with CD and 40 healthy controls (HCs) were included. The plasma profile of Vitamin A and AAs and the mRNA expression levels of target genes were assessed. Active adult patients exhibited a decrease in Vitamin A levels (p = 0.04) and an increase in IL-2 (p = 0.008) and IL-12 (p = 0.007) mRNA expression compared to the HCs. The treated adult patients showed elevated Serine (p = 0.003) and Glycine (p = 0.04) levels, as well as increased IL-12 (p < 0.0001) mRNA expression, and a decrease in Tryptophan (p = 0.04) levels relative to the controls. Additionally, the treated adult patients had higher plasma levels of Threonine compared to both the active (p = 0.04) and control (p = 0.02) subjects, and the increased mRNA expression of IL-4 (p = 0.01) in comparison to the active patients. In active children with CD, the IL-2 mRNA level was found to be higher than in the controls (p < 0.0001) and in the treated children (p = 0.005). The treated children with CD exhibited decreased plasma levels of Tryptophan (p = 0.01) and Isoleucine (p = 0.01) relative to the controls, and the increased mRNA expression of TGFß (p = 0.04) relative to the active patients. Elevated levels of specific AAs (Serine, Glycine, Threonine) in the treated CD patients suggested their potential to improve intestinal damage and inflammation, while decreased levels of Tryptophan and Isoleucine highlighted the need for dietary intervention.

14.
Nutrients ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375673

RESUMO

BACKGROUND: Non-celiac wheat sensitivity (NCWS) is a poorly understood gluten-related disorder (GRD) and its prominent symptoms can be ameliorated by gluten avoidance. This study aimed to determine the effectiveness of a probiotic mixture in hydrolyzing gliadin peptides (toxic components of gluten) and suppressing gliadin-induced inflammatory responses in Caco-2 cells. METHODS: Wheat dough was fermented with a probiotic mix for 0, 2, 4, and 6 h. The effect of the probiotic mix on gliadin degradation was monitored by SDS-PAGE. The expression levels of IL-6, IL-17A, INF-γ, IL-10, and TGF-ß were evaluated using ELISA and qRT-PCR methods. RESULTS: According to our findings, fermenting wheat dough with a mix of B. longum, L. acidophilus, and L. plantarum for 6 h was effective in gliadin degradation. This process also reduced levels of IL-6 (p = 0.004), IL-17A (p = 0.004), and IFN-γ (p = 0.01) mRNA, as well as decreased IL-6 (p = 0.006) and IFN-γ (p = 0.0009) protein secretion. 4 h fermentation led to a significant decrease in IL-17A (p = 0.001) and IFN-γ (p = 0.003) mRNA, as well as reduced levels of IL-6 (p = 0.002) and IFN-γ (p < 0.0001) protein secretion. This process was also observed to increase the expression levels of IL-10 (p < 0.0001) and TGF-ß (p < 0.0001) mRNA. CONCLUSIONS: 4 h fermentation of wheat flour with the proposed probiotic mix might be a good strategy to develop an affordable gluten-free wheat dough for NCWS and probably other GRD patients.


Assuntos
Doença Celíaca , Gliadina , Humanos , Gliadina/efeitos adversos , Células CACO-2 , Hidrólise , Interleucina-10 , Interleucina-17 , Doença Celíaca/metabolismo , Interleucina-6 , Farinha , Triticum/metabolismo , Glutens/efeitos adversos , Lactobacillus acidophilus , Fator de Crescimento Transformador beta
15.
Mol Biol Rep ; 50(6): 4841-4849, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37039998

RESUMO

BACKGROUND: Celiac disease (CD) is a chronic immune-mediated enteropathy and a cytokine network is involved in its pathogenesis. Interleukin-2 (IL-2) has a key role in the adaptive immune pathogenesis of CD and has been reported to be one of the earliest cytokines to be elicited after gluten exposure by CD patients. This study aimed at investigating the expression level of IL-2 and functionally related genes SOCS1 and TBX21 in active and treated CD patients compared to controls. METHODS AND RESULTS: Peripheral blood (PB) samples were collected from 40 active CD (ACD), 100 treated CD, and 100 healthy subjects. RNA was extracted, cDNA was synthesized and mRNA expression levels of the desired genes were investigated by Real-time PCR. The gene-gene interaction network was also constructed by GeneMANIA. Our results showed a higher PB mRNA expression of IL-2 in ACD patients compared to controls (p = 0.001) and treated CD patients (p˂0.0001). The mRNA expression level of TBX21 was also significantly up-regulated in ACD patients compared to controls (P = 0.03). SOCS1 mRNA level did not differ between active and treated CD patients and controls (p˃0.05) but showed a significant correlation with the patient's aphthous stomatitis symptom (r = 0.37, p = 0.01). ROC curve analysis suggested that the use of IL-2 levels can reach a high specificity and sensitivity in discriminating active CD patients. CONCLUSIONS: The PB level of IL-2 has the potential to be introduced as a diagnostic biomarker for CD. Larger cohort studies, including pediatric patients, are needed to achieve more insights in this regard.


Assuntos
Doença Celíaca , Criança , Humanos , Células Sanguíneas , Doença Celíaca/diagnóstico , Doença Celíaca/genética , Citocinas/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina
16.
Nutrients ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986121

RESUMO

Gluten proteins are known as immunological triggers for inflammation resulting in mucosal lesions in patients with coeliac disease (CD). Adherence to a strict gluten-free diet (GFD) is currently known as the only effective treatment for CD. In this study, we performed a systematic review and dose-response meta-analysis on data from previous studies to investigate the association between different gluten doses administered and the risk of CD relapse. Electronic databases were systematically searched to retrieve studies that investigated the response of CD patients to different amounts of gluten intake and evaluated the clinical, serologic, and/or histologic evidence to recognize disease relapse. Study-specific relative risks (RRs) were combined using a random effects model. A total of 440 identified published papers were screened, of which 7 records were selected following full-text reviewing and eligibility assessment for dose-response meta-analysis. According to our analysis, the risk of CD relapse is estimated to be 0.2% (RR: 1.002; 95% CI: 1.001 to 1.004) following the consumption of 6 mg gluten/day, which was increased to 7% (RR: 1.07; 95% CI: 1.03 to 1.10), 50% (RR: 1.50; 95% CI: 1.23 to 1.82), 80% (RR: 1.80; 95% CI: 1.36 to 2.38), and 100% (RR: 2.00; 95% CI: 1.43 to 2.78) by the daily intake of 150, 881, 1276, and 1505 mg gluten, respectively. Although good adherence to a GFD can adequately control CD-related symptoms, disease relapse might happen even with a very low dose of gluten, and the duration of exposure to gluten is also an important matter. The current literature has substantial limitations, such as relying on the data from just a few countries that were different in terms of the amount of gluten administered, the duration of the challenge, etc. Therefore, more randomized clinical trials using a standardized gluten challenge protocol are needed to confirm the findings of the present study.


Assuntos
Doença Celíaca , Glutens , Humanos , Dieta Livre de Glúten , Glutens/efeitos adversos , Resultado do Tratamento
17.
Microb Pathog ; 179: 106086, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963704

RESUMO

Blastocystis sp. is a common intestinal protist, reported from symptomatic and asymptomatic subjects. Blastocystis sp. has been reported from a broad spectrum of gastrointestinal disorders. Celiac disease (CD) is an autoimmune disorder of the small intestine, which leads to the lack of tolerance against gluten. Long-term following of gluten-free diet in CD patients decreases the gut microbiota restoration and probably decreases the chance of Blastocystis sp. colonization. The current study aimed to investigate the prevalence of Blastocystis sp. and its subtypes in CD patients in comparison to healthy subjects. Stool samples were collected from 238 participants including 92 confirmed CD patients and 146 healthy subjects. Upon DNA extraction, the presence of Blastocystis sp. was evaluated using amplification of discriminative regions of the small ribosomal RNA (ssu rRNA) gene. To characterize subtypes and alleles, amplified fragments were sequenced. Phylogenetic trees were constructed to visualize subtype correlation. Our findings showed that 21% (50) of samples including 16.3% (15/92) and 23.97% (35/146) were positive for Blastocystis sp. in CD patients and healthy controls, respectively. Except family relationship, other variables were not statistical correlated with the presence of Blastocystis sp.. Totally, 25 samples were successfully sequenced. Accordingly, ST1, ST2, and ST3 were characterized in 8 (32%), 9 (36%), and 8 (32%) of samples, respectively. Allele discrimination showed that all ST1 were allele 4; alleles 11, 9, and 12 were retrieved from ST2, and alleles 34, 36, and 38 were observed in ST3. The relationship between colonization of Blastocystis sp. and alteration in the gut microbiota composition is indeterminate, however, this hypothesis that following gluten-free diet in CD patients may affect the colonization of Blastocystis sp. via alteration in the gut microbiota composition could be interesting for further investigations.


Assuntos
Infecções por Blastocystis , Blastocystis , Humanos , Blastocystis/genética , Infecções por Blastocystis/epidemiologia , Filogenia , Estudos de Casos e Controles , Epidemiologia Molecular , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Variação Genética , Fezes , Prevalência
18.
Sci Rep ; 13(1): 3237, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828897

RESUMO

Macrophages (MQs) pro-inflammatory phenotype is triggered by gliadin peptides. Akkermansia muciniphila (A. muciniphila) showed to enhance the anti-inflammatory phenotype of MQs. This study aimed to investigate the anti-inflammatory effects of A. muciniphila, on gliadin stimulated THP-1 derived macrophages. THP-1 cell line monocytes were differentiated into MQs by phorbol 12-myristate 13-acetate (PMA). MQs were treated with A. muciniphila before and after stimulation with gliadin (pre- and post-treat). CD11b, as a marker of macrophage differentiation, and CD206 and CD80, as M1 and M2 markers, were evaluated by flow cytometry technique. The mRNA expression of TGF-ß, IL-6, and IL-10 and protein levels of IL-10 and TNF-α were measured by RT-PCR and ELISA techniques, respectively. Results show an increased percentage of M1 phenotype and release of proinflammatory cytokines (like TNF-α and IL-6) by macrophages upon incubation with gliadin. Pre- and post-treatment of gliadin-stimulated macrophages with A. muciniphila induced M2 phenotype associated with decreased proinflammatory (IL-6, TNF-α) and increased anti-inflammatory (IL-10, TGF-ß) cytokines expression relative to the group that was treated with gliadin alone. This study suggests the potential beneficial effect of A. muciniphila on gliadin-stimulated MQs and the importance of future studies focusing on their exact mechanism of action on these cells.


Assuntos
Gliadina , Interleucina-10 , Interleucina-10/metabolismo , Gliadina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Fator de Crescimento Transformador beta/metabolismo
19.
Mol Biol Rep ; 50(3): 2007-2014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536183

RESUMO

BACKGROUND: Celiac disease (CD) is a hereditary immune-mediated disorder, which is along with the enormous production of pro-inflammatory cytokines and the reduced level of tight junction proteins. The aim of this study was to determine the expression of TNF-α, IFN-γ, IL-18, Occludin, miR-122-5p and miR-197-3p genes in duodenal biopsies of treated CD patients in comparison to the controls. METHODS AND RESULTS: Biopsy specimens were taken from the duodenum of 50 treated CD patients (36 (72%) females and 14 (28%) males with mean age of 37.06 ± 7.02 years) and 50 healthy controls (17 (34%) females and 33 (66%) males with mean age of 34.12 ± 4.9). Total RNA was isolated, cDNA was synthesized and mRNA expression of TNF-α, IFN-γ, IL-18, Occludin, miR-122-5p and miR-197-3p were quantified by relative qPCR using B2M and U6 as internal control genes. All data were evaluated using SPSS (V.21) and GraphPad Prism (V.5). Our results showed that there was no significant difference between patients and controls for intestinal mRNA expression of TNF-α, IFN-γ, IL-18, Occludin, and miR-122-5p (p > 0.05) and the expression of miR-197-3p was significantly increased in CD patients relative to control subjects (p = 0.049). CONCLUSION: This study suggests that adherence to GFD may have a positive effect on the tight junction (TJ) permeability and in this process, miR-197-3p plays an important role. Increased expression of miR-197-3p with a final protective effect on Occludin expression can be further studied as a complement therapeutic target for Celiac disease.


Assuntos
Doença Celíaca , MicroRNAs , Adulto , Feminino , Humanos , Masculino , Doença Celíaca/genética , Doença Celíaca/patologia , Dieta Livre de Glúten , Interleucina-18/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ocludina/genética , Permeabilidade , RNA Mensageiro/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Gastroenterol Hepatol Bed Bench ; 16(4): 386-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313351

RESUMO

Maintaining a healthy balance between commensal, and pathogenic bacteria within the gut microbiota is crucial for ensuring the overall health, and well-being of the host. In fact, by affecting innate, and adaptive immune responses, the gut microbiome plays a key role in maintaining intestinal homeostasis and barrier integrity. Dysbiosis is the loss of beneficial microorganisms and the growth of potentially hazardous microorganisms in a microbial community, which has been linked to numerous diseases. As the primary inducer of circadian rhythm, light can influence the human intestinal microbiome. Photobiomodulation therapy (PBMT), which is the use of red (630-700 nm), and near-infrared light (700 and 1200 nm), can stimulate healing, relieve pain, and reduce inflammation, and affect the circadian rhythm and gut microbiome beneficially. Our focus in this paper is on the effects of PBMT on gut microbiota, to provide an overview of how it can help control gut microbiota dysbiosis-related disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA