Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895699

RESUMO

ZnO nanoarrays were grown via a low-temperature hydrothermal method. Solutions, each with different additive combinations, were prepared and evaluated. The effects of the additives involved in the growth procedure, i.e., ammonium hydroxide and sodium citrate, were studied in terms of the morphological, optical and scintillation properties of the ZnO nanostructures. Measurement of the nanorod (NR) length, corresponding photoluminescence (PL) and scintillation spectra and their dependence on the additives present in the solution are discussed. ZnO NRs grown on a silica substrate, whose UV transmission was found to be better than glass, showed high-quality structural and optical properties. It was found that the addition of sodium citrate significantly reduced defects and correspondingly increased the intrinsic near-band-edge (NBE) UV emission intensity at ~380 nm. To obtain high-quality nanostructures, samples were annealed in a 10% H2 + 90% N2 atmosphere. The anneal in the forming gas atmosphere enhanced the emission of the UV peak by reducing defects in the nanostructure. NRs are highly tapered towards the end of the structure. The tapering process was monitored using time growth studies, and its effect on PL and reflectance spectra are discussed. A good alpha particle response was obtained for the grown ZnO NRs, confirming its potential to be used as an alpha particle scintillator. After optimizing the reaction parameters, it was concluded that when ammonium hydroxide and sodium citrate were used, vertically well-aligned and long ZnO nanoarrays with highly improved optical and scintillation properties were obtained.

2.
Sci Rep ; 6: 27052, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27243374

RESUMO

Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm(-2) (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA