RESUMO
The objective of the study was to characterize adaptations of hepatic metabolism of dairy cows of two Holstein strains with varying proportions of grazing in the feeding strategy. Multiparous autumn calving Holstein cows of New Zealand (NZH) and North American (NAH) strains were assigned to a randomized complete block design with a 2 x 2 factorial arrangement with two feeding strategies that varied in the proportions of pasture and supplementation: maximum pasture and supplementation with a pelleted concentrate (MaxP) or fixed pasture and supplementation with a total mixed ration (FixP) from May through November of 2018. Hepatic biopsies were taken at - 45 ± 17, 21 ± 7, 100 ± 23 and 180 ± 23 days in milk (DIM), representing prepartum, early lactation, early mid-lactation and late mid-lactation. The effects of DIM, feeding strategy (FS), strain and their interactions were analyzed with mixed models using repeated measures. Cows of both strains had similar triglyceride levels, mitochondrial function and carnitine palmitoyltransferase activity in liver during lactation. However, there was an effect of DIM and FS as liver triglyceride was higher for the MaxP strategy at 21 DIM and both mitochondrial function and carnitine palmitoyltransferase activity in liver were lower for the MaxP strategy at 21 DIM. Hepatic mitochondrial function and acetylation levels were affected by the interaction between strain and feeding strategy as both variables were higher for NAH cows in the MaxP strategy. Mid-lactation hepatic gene expression of enzymes related to fatty acid metabolism and nuclear receptors was higher for NZH than NAH cows. This work confirms the association between liver triglyceride, decreased hepatic mitochondrial function and greater mitochondrial acetylation levels in cows with a higher inclusion of pasture and suggests differential adaptative mechanisms between NAH and NZH cows to strategies with varying proportions of grazing in the feeding strategy.
Assuntos
Dieta , Suplementos Nutricionais , Feminino , Bovinos , Animais , Dieta/veterinária , Carnitina O-Palmitoiltransferase/metabolismo , Lactação/fisiologia , Leite/metabolismo , Triglicerídeos/metabolismoRESUMO
The objective of this study was to assess hepatic ATP synthesis in Holstein cows of North American and New Zealand origins and the gluconeogenic pathway, one of the pathways with the highest ATP demands in the ruminant liver. Autumn-calving Holstein cows of New Zealand and North American origins were managed in a pasture-based system with supplementation of concentrate that represented approximately 33% of the predicted dry matter intake during 2017, 2018, and 2019, and hepatic biopsies were taken during mid-lactation at 174 ± 23 days in milk. Cows of both strains produced similar levels of solids-corrected milk, and no differences in body condition score were found. Plasma glucose concentrations were higher for cows of New Zealand versus North American origin. Hepatic mitochondrial function evaluated measuring oxygen consumption rates showed that mitochondrial parameters related to ATP synthesis and maximum respiratory rate were increased for cows of New Zealand compared with North American origin. However, hepatic gene expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate dehydrogenase kinase was increased in North American compared with New Zealand cows. These results altogether suggest an increased activity of the tricarboxylic cycle in New Zealand cows, leading to increased ATP synthesis, whereas North American cows pull tricarboxylic cycle intermediates toward gluconeogenesis. The fact that this occurs during mid-lactation could account for the increased persistency of North American cows, especially in a pasture-based system. In addition, we observed an augmented mitochondrial density in New Zealand cows, which could be related to feed efficiency mechanisms. In sum, our results contribute to the elucidation of hepatic molecular mechanisms in dairy cows in production systems with higher inclusion of pastures.
Assuntos
Gluconeogênese , Lactação , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Indústria de Laticínios/métodos , Dieta/veterinária , Feminino , Expressão Gênica , Gluconeogênese/genética , Lactação/genética , Leite/metabolismo , Mitocôndrias/metabolismoRESUMO
In pasture-based systems, there are nutritional and climatic challenges exacerbated across lactation; thus, dairy cows require an enhanced adaptive capacity compared with cows in confined systems. We aimed to evaluate the effect of lactation stage (21 vs. 180 days in milk, DIM) and Holstein genetic strain (North American Holstein, NAH, n = 8; New Zealand Holstein, NZH, n = 8) on metabolic adaptations of grazing dairy cows through plasma metabolomic profiling and its association with classical metabolites. Although 67 metabolites were affected (FDR < 0.05) by DIM, no metabolite was observed to differ between genetic strains while only alanine was affected (FDR = 0.02) by the interaction between genetic strain and DIM. However, complementary tools for time-series analysis (ASCA analysis, MEBA ranking) indicated that alanine and the branched-chain amino acids (BCAA) differed between genetic strains in a lactation-stage dependent manner. Indeed, NZH cows had lower (P-Tukey < 0.05) plasma concentrations of leucine, isoleucine and valine than NAH cows at 21 DIM, probably signaling for greater insulin sensitivity. Metabolic pathway analysis also revealed that, independently of genetic strains, AA metabolism might be structurally involved in homeorhetic changes as 40% (19/46) of metabolic pathways differentially expressed (FDR < 0.05) between 21 and 180 DIM belonged to AA metabolism.
Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Bovinos/sangue , Bovinos/genética , Lactação/sangue , Leite/química , Ácido 3-Hidroxibutírico/sangue , Alanina/sangue , Animais , Glicemia/metabolismo , Dieta/veterinária , Ácidos Graxos não Esterificados/sangue , Feminino , Insulina/sangue , Metaboloma/genética , Metabolômica/métodos , Ureia/sangueRESUMO
BACKGROUND: In dairy mixed production systems, maximizing pasture intake and total mixed ration (TMR) supplementation are management tools used to increase dry matter and energy intake in early lactation. The objective was to evaluate metabolic and endocrine profiles and hepatic gene expression of Holstein cows fed either TMR ad libitum (without grazing) or diets combining TMR (50 % ad libitum DM intake) and pasture with different grazing strategies (6 h in one grazing session or 9 h in two grazing sessions) in early lactation. Pluriparous cows were grouped by calving date, blocked within group by body weight and body condition score (BCS) and randomly assigned to one of three feeding strategies from calving (day 0) to 60 days postpartum: control cows fed TMR ad libitum (G0; confined cows fed 100 % TMR without access to pasture), pasture grazing with 6 h of access in one session supplemented with 50 % TMR (G1), and 9 h of access in two sessions supplemented with 50 % TMR (G2). RESULTS: Net energy (NE), but not metabolizable protein (MP), demands for maintenance and/or milk increased in G2 when compared with G1 and G0 cows, respectively. However, NE and MP balances were lower in G1 and G2 than G0 cows. Cow BCS at +55 days was greater in G0 than G2 cows and probability of cows cycling during the first month was greater in G0 and G1 than G2 cows. During the postpartum period, non-esterified fatty acids were greater in G1 than G2 and G0 and ß-hydroxybutyrate was greater in G1 and G2 than G0 cows. Plasma insulin was greater and insulin-like growth factor (IGF)-I tended to be greater in G0 than G2 cows, leptin was greater in G2 and G0 and adiponectin were greater in G2 cows. Hepatic expression of growth hormonereceptor-1A and IGF1 mRNA decreased while IGF binding proteins 1,2,4,5 and 6 (IGFBP) mRNA as well as mRNA expression of insulin, leptin (LEPRb) and adiponectin-2 receptors increased from pre to postpartum in all cows. However, only hepatic IGFBP6 and LEPRb mRNA were greater in G2 than G0 and G1 cows, respectively. CONCLUSION: Metabolic-endocrine profiles of cows with different feeding strategies in early lactation reflected not only changes in milk energy output and energy balance but also in walking and grazing activity. Concentrations of insulin and IGF-I were increased in G0 cows whereas plasma adiponectin and both, insulin and leptin sensitivity were improved G2 cows. Increased NE demands in G2 cows when compared to G1 and G0 cows, implied a metabolic stress that impacted negatively on reproductive function.