Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326974

RESUMO

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Assuntos
Conexina 43 , Receptor beta de Estrogênio , Animais , Feminino , Conexina 43/metabolismo , Receptor beta de Estrogênio/metabolismo , Núcleo Supraquiasmático/fisiologia , Ritmo Circadiano/fisiologia , Junções Comunicantes/metabolismo , Conexinas/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Estrogênios/farmacologia , Mamíferos/metabolismo
2.
Trends Neurosci ; 47(1): 36-46, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071123

RESUMO

The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Animais , Gravidez , Feminino , Núcleo Supraquiasmático , Mamíferos
3.
Front Neurosci ; 17: 1165230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179561

RESUMO

Glucocorticoids (GCs) are essential drivers of mammalian tissue growth and maturation during one of the most critical developmental windows, the perinatal period. The developing circadian clock is shaped by maternal GCs. GC deficits, excess, or exposure at the wrong time of day leads to persisting effects later in life. During adulthood, GCs are one of the main hormonal outputs of the circadian system, peaking at the beginning of the active phase (i.e., the morning in humans and the evening in nocturnal rodents) and contributing to the coordination of complex functions such as energy metabolism and behavior, across the day. Our article discusses the current knowledge on the development of the circadian system with a focus on the role of GC rhythm. We explore the bidirectional interaction between GCs and clocks at the molecular and systemic levels, discuss the evidence of GC influence on the master clock in the suprachiasmatic nuclei (SCN) of the hypothalamus during development and in the adult system.

5.
Brain Sci ; 12(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36138934

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a very common disorder in children and adults. A connection with sleep disorders, and above all, disorders of the circadian rhythm are the subject of research and debate. The circadian system can be represented on different levels. There have been a variety of studies examining 24-h rhythms at the behavioral and endocrine level. At the molecular level, these rhythms are based on a series of feedback loops of core clock genes and proteins. In this paper, we compared the circadian rhythms at the behavioral, endocrine, and molecular levels between children with ADHD and age- and BMI-matched controls, complementing the previous data in adults. In a minimally invasive setting, sleep was assessed via a questionnaire, actigraphy was used to determine the motor activity and light exposure, saliva samples were taken to assess the 24-h profiles of cortisol and melatonin, and buccal mucosa swaps were taken to assess the expression of the clock genes BMAL1 and PER2. We found significant group differences in sleep onset and sleep duration, cortisol secretion profiles, and in the expression of both clock genes. Our data suggest that the analysis of circadian molecular rhythms may provide a new approach for diagnosing ADHD in children and adults.

6.
ACS Omega ; 7(29): 25022-25030, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910134

RESUMO

Although copper (Cu) is an essential trace metal for cells, it can induce harmful effects as it participates in the Fenton reaction. Involuntary exposure to Cu overload is much more common than expected and has been linked with neurodegeneration, particularly with Alzheimer's disease (AD) evidenced by a positive correlation between free Cu in plasma and the severity of the disease. It has been suggested that Cu imbalance alters cholesterol (Chol) homeostasis and that high membrane Chol promotes the amyloidogenic processing of the amyloid precursor protein (APP) secreting the ß-amyloid (Aß) peptide. Despite the wide knowledge on the effects of Cu in mature brain metabolism, the consequence of its overload on immature neurons remains unknown. Therefore, we used an undifferentiated human neuroblastoma cell line (SH-SY5Y) to analyze the effect of sublethal concentrations of Cu on 1- de novo Chol synthesis and membrane distribution; 2-APP levels in cells and its distribution in membrane rafts; 3-the levels of Aß in the culture medium. Our results demonstrated that Cu increases reactive oxygen species (ROS) and favors Chol de novo synthesis in both ROS-dependent and independent manners. Also, at least part of these effects was due to the activation of 3-hydroxy-3-methyl glutaryl CoA reductase (HMGCR). In addition, Cu increases the Chol/PL ratio in the cellular membranes, specifically Chol content in membrane rafts. We found no changes in total APP cell levels; however, its presence in membrane rafts increases with the consequent increase of Aß in the culture medium. We conclude that Cu overload favors Chol de novo synthesis in both ROS-dependent and independent manners, being at least in part, responsible for the high Chol levels found in the cell membrane and membrane rafts. These may promote the redistribution of APP into the rafts, favoring the amyloidogenic processing of this protein and increasing the levels of Aß.

7.
Front Pediatr ; 10: 721355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372176

RESUMO

Aim: The aim of the study is to evaluate the influence of the timing of antenatal steroids (ANSs) on neonatal outcome of very low birth weight infants (VLBWI) born before 30 weeks of gestation in the German Neonatal Network. Methods: The German Neonatal Network is a large population-based cohort study enrolling VLBWIs since 2009. We included 672 neonates, who were born between January 1, 2009 and December 31, 2019 in our analysis in 10 selected centers. Infants were divided into four subgroups based on the interval between the first steroid administration and preterm birth: (I) two doses of betamethasone, ANS-birth interval: >24 h to 7 days, n = 187, (II) only one dose of betamethasone, ANS-birth interval 0-24 h, n = 70, (III) two doses of betamethasone, ANS-birth interval >7 days, n = 177, and (IV) no antenatal steroids, n = 238. Descriptive statistics and logistic regression analyses were performed for the main neonatal outcome parameters. Group IV (no ANS) was used as a reference. Results: An ANS-birth interval of 24 h to 7 days after the first dose was associated with a reduced risk for intraventricular hemorrhage (OR 0.17; 95% CI 0.09-0.31, p < 0.001) and mechanical ventilation (OR 0.37; 95% CI 0.23-0.61, p < 0.001), whereas the group of infants that only received a single dose of steroids reflected a subgroup at high risk for adverse neonatal outcomes; an ANS-birth interval of >7 days was still associated with a lower risk for intraventricular hemorrhage (OR 0.43; 95% CI 0.25-0.72, p = 0.002) and the need for mechanical ventilation (OR 0.43; 95% CI 0.27-0.71, p = 0.001). Conclusion: Our observational data indicate that an ANS-birth interval of 24 h to 7 days is strongly associated with a reduced risk of intraventricular hemorrhage in VLBWIs. Further research is needed to improve the prediction of preterm birth in order to achieve a timely administration of antenatal steroids that may improve neonatal outcomes such as intraventricular hemorrhage.

8.
Glia ; 70(5): 808-819, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34816453

RESUMO

Since the early observations made by Santiago Ramon y Cajal more than a century ago till now, astrocytes have gradually gained protagonism as essential partners of neurons in building brain circuits that regulate complex behavior. In mammals, processes such as sleep-wake cycle, locomotor activity, cognition and memory consolidation, homeostatic and hedonic appetite and stress response (among others), are synchronized in 24-h rhythms by the circadian system. In such a way, physiology efficiently anticipates and adapts to daily recurring changes in the environment. The hypothalamic suprachiasmatic nucleus (SCN) is considered the central pacemaker, it has been traditionally described as a nucleus of around 10,000 neurons nearly all GABAergic able to be entrained by light and to convey time information through multiple neuronal and hormonal pathways. Only recently, this neuro-centered view was challenged by breakthrough discoveries implicating astrocytes as essential time-keepers. In the present review, we will describe the current view on the SCN circuit and discuss whether astrocytic functions described in other brain regions and state-of-the-art experimental approaches, could help explaining better those well- and not so well-known features of the central pacemaker.


Assuntos
Astrócitos , Marca-Passo Artificial , Animais , Astrócitos/metabolismo , Ritmo Circadiano/fisiologia , Mamíferos/fisiologia , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo
9.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913482

RESUMO

In mammals, 24-h rhythms of physiology and behavior are organized by a body-wide network of clock genes and proteins. Despite the well-known function of the adult circadian system, the roles of maternal, fetal and placental clocks during pregnancy are poorly defined. In the mature mouse placenta, the labyrinth zone (LZ) is of fetal origin and key for selective nutrient and waste exchange. Recently, clock gene expression has been detected in LZ and other fetal tissues; however, there is no evidence of a placental function controlled by the LZ clock. Here, we demonstrate that specifically the trophoblast layer of the LZ harbors an already functional clock by late gestation, able to regulate in a circadian manner the expression and activity of the xenobiotic efflux pump, ATP-binding cassette sub-family B member 1 (ABCB1), likely gating the fetal exposure to drugs from the maternal circulation to certain times of the day. As more than 300 endogenous and exogenous compounds are substrates of ABCB1, our results might have implications in choosing the maternal treatment time when aiming either maximal/minimal drug availability to the fetus/mother.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gravidez/fisiologia , Trofoblastos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Feminino , Camundongos
10.
Nutrients ; 12(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114672

RESUMO

(1) Background: We aimed to evaluate the effect of proposed "microbiome-stabilising interventions", i.e., breastfeeding for ≥3 months and prophylactic use of Lactobacillus acidophilus/ Bifidobacterium infantis probiotics on neurocognitive and behavioral outcomes of very-low-birthweight (VLBW) children aged 5-6 years. (2) Methods: We performed a 5-year-follow-up assessment including a strength and difficulties questionnaire (SDQ) and an intelligence quotient (IQ) assessment using the Wechsler Preschool and Primary Scale of Intelligence (WPPSI)-III test in preterm children previously enrolled in the German Neonatal Network (GNN). The analysis was restricted to children exposed to antenatal corticosteroids and postnatal antibiotics. (3) Results: 2467 primary school-aged children fulfilled the inclusion criteria. In multivariable linear regression models breastfeeding ≥3 months was associated with lower conduct disorders (B (95% confidence intervals (CI)): -0.25 (-0.47 to -0.03)) and inattention/hyperactivity (-0.46 (-0.81 to -0.10)) as measured by SDQ. Probiotic treatment during the neonatal period had no effect on SDQ scores or intelligence. (4) Conclusions: Prolonged breastfeeding of highly vulnerable infants may promote their mental health later in childhood, particularly by reducing risk for inattention/hyperactivity and conduct disorders. Future studies need to disentangle the underlying mechanisms during a critical time frame of development.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Aleitamento Materno/estatística & dados numéricos , Recém-Nascido de muito Baixo Peso/crescimento & desenvolvimento , Probióticos/uso terapêutico , Fatores de Tempo , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Criança , Desenvolvimento Infantil , Pré-Escolar , Transtorno da Conduta/epidemiologia , Transtorno da Conduta/etiologia , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Inteligência , Modelos Lineares , Masculino , Testes de Estado Mental e Demência , Fatores de Risco
11.
Genetics ; 216(3): 735-752, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32769099

RESUMO

Sleep is a conserved behavioral state. Invertebrates typically show quiet sleep, whereas in mammals, sleep consists of periods of nonrapid-eye-movement sleep (NREMS) and REM sleep (REMS). We previously found that the transcription factor AP-2 promotes sleep in Caenorhabditiselegans and Drosophila In mammals, several paralogous AP-2 transcription factors exist. Sleep-controlling genes are often conserved. However, little is known about how sleep genes evolved from controlling simpler types of sleep to govern complex mammalian sleep. Here, we studied the roles of Tfap2a and Tfap2b in sleep control in mice. Consistent with our results from C. elegans and Drosophila, the AP-2 transcription factors Tfap2a and Tfap2b also control sleep in mice. Surprisingly, however, the two AP-2 paralogs play contrary roles in sleep control. Tfap2a reduction of function causes stronger delta and theta power in both baseline and homeostasis analysis, thus indicating increased sleep quality, but did not affect sleep quantity. By contrast, Tfap2b reduction of function decreased NREM sleep time specifically during the dark phase, reduced NREMS and REMS power, and caused a weaker response to sleep deprivation. Consistent with the observed signatures of decreased sleep quality, stress resistance and memory were impaired in Tfap2b mutant animals. Also, the circadian period was slightly shortened. Taken together, AP-2 transcription factors control sleep behavior also in mice, but the role of the AP-2 genes functionally diversified to allow for a bidirectional control of sleep quality. Divergence of AP-2 transcription factors might perhaps have supported the evolution of more complex types of sleep.


Assuntos
Privação do Sono/genética , Fases do Sono , Fator de Transcrição AP-2/metabolismo , Animais , Ritmo Circadiano , Ritmo Delta , Memória , Camundongos , Privação do Sono/fisiopatologia , Ritmo Teta , Fator de Transcrição AP-2/genética
12.
Nat Commun ; 11(1): 3593, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681096

RESUMO

During pregnancy, maternal endocrine signals drive fetal development and program the offspring's physiology. A disruption of maternal glucocorticoid (GC) homeostasis increases the child's risk of developing psychiatric disorders later in life. We here show in mice, that the time of day of antenatal GC exposure predicts the behavioral phenotype of the adult offspring. Offspring of mothers receiving GCs out-of-phase compared to their endogenous circadian GC rhythm show elevated anxiety, impaired stress coping, and dysfunctional stress-axis regulation. The fetal circadian clock determines the vulnerability of the stress axis to GC treatment by controlling GC receptor (GR) availability in the hypothalamus. Similarly, a retrospective observational study indicates poorer stress compensatory capacity in 5-year old preterm infants whose mothers received antenatal GCs towards the evening. Our findings offer insights into the circadian physiology of feto-maternal crosstalk and assign a role to the fetal clock as a temporal gatekeeper of GC sensitivity.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Exposição Materna/efeitos adversos , Transtornos Mentais/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ansiedade , Comportamento/efeitos dos fármacos , Feminino , Glucocorticoides/administração & dosagem , Humanos , Recém-Nascido Prematuro/psicologia , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Gravidez , Complicações na Gravidez/tratamento farmacológico , Cuidado Pré-Natal , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
13.
J Mol Biol ; 432(12): 3618-3638, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31926953

RESUMO

The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.


Assuntos
Relógios Biológicos/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fotoperíodo , Animais , Humanos , Mamíferos , Neurônios/metabolismo , Especificidade de Órgãos/genética , Núcleo Supraquiasmático/crescimento & desenvolvimento , Núcleo Supraquiasmático/metabolismo
14.
Front Neurosci ; 14: 631687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510617

RESUMO

The circadian (24 h) clock system adapts physiology and behavior to daily recurring changes in the environment. Compared to the extensive knowledge assembled over the last decades on the circadian system in adults, its regulation and function during development is still largely obscure. It has been shown that environmental factors, such as stress or alterations in photoperiod, disrupt maternal neuroendocrine homeostasis and program the offspring's circadian function. However, the process of circadian differentiation cannot be fully dependent on maternal rhythms alone, since circadian rhythms in offspring from mothers lacking a functional clock (due to SCN lesioning or genetic clock deletion) develop normally. This mini-review focuses on recent findings suggesting that the embryo/fetal molecular clock machinery is present and functional in several tissues early during gestation. It is entrained by maternal rhythmic signals crossing the placenta while itself controlling responsiveness to such external factors to certain times of the day. The elucidation of the molecular mechanisms through which maternal, placental and embryo/fetal clocks interact with each other, sense, integrate and coordinate signals from the early life environment is improving our understanding of how the circadian system emerges during development and how it affects physiological resilience against external perturbations during this critical time period.

15.
J Neuroendocrinol ; 32(1): e12774, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323169

RESUMO

Cardiolipin (CL) is a phospholipid that is almost exclusively located in the inner mitochondrial membrane of eukaryotic cells. As a result of its unique structure and distribution, CL establishes non-covalent bonds with a long list of proteins involved in ATP production, mitochondria biogenesis, mitophagy and apoptosis. Thus, the amount of CL, as well as its fatty acid composition and location, strongly impacts upon mitochondrial-dependent functions and therefore the metabolic homeostasis of different tissues. The brain is particularly sensitive to mitochondrial dysfunction as a result of its high metabolic demand. Several mitochondrial related-neurodegenerative disorders, as well as physiological ageing, show altered CL metabolism. Furthermore, mice lacking enzymes involved in CL synthesis show cognitive impairments. CL content and metabolism are regulated by gonadal hormones in the developing and adult brain. In neuronal cultures, oestradiol increases CL content, whereas adult ovariectomy decreases CL content and alters CL metabolism in the hippocampal mitochondria. Transient sex differences in brain CL metabolism have been detected during development. At birth, brain CL has a higher proportion of unsaturated fatty acids in the brain of male mice than in the brain of females. In addition, the expression of enzymes involved in CL de novo and recycling synthetic pathways is higher in males. Most of these sex differences are abolished by the neonatal androgenisation of females, suggesting a role for testosterone in the generation of sex differences in brain CL. The regulation of brain CL by gonadal hormones may be linked to their homeostatic and protective actions in neural cells, as well as the manifestation of sex differences in neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Cardiolipinas/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Neurônios/metabolismo , Animais , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Caracteres Sexuais
17.
Cell Rep ; 27(11): 3385-3400.e3, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189119

RESUMO

Regulation of body temperature critically depends on thyroid hormone (TH). Recent studies revealed that TH induces browning of white adipose tissue, possibly contributing to the observed hyperthermia in hyperthyroid patients and potentially providing metabolic benefits. Here, we show that browning by TH requires TH-receptor ß and occurs independently of the sympathetic nervous system. The beige fat, however, lacks sufficient adrenergic stimulation and is not metabolically activated despite high levels of uncoupling protein 1 (UCP1). Studies at different environmental temperatures reveal that TH instead causes hyperthermia by actions in skeletal muscle combined with a central body temperature set-point elevation. Consequently, the metabolic and thermogenic effects of systemic hyperthyroidism were maintained in UCP1 knockout mice, demonstrating that neither beige nor brown fat contributes to the TH-induced hyperthermia and elevated glucose consumption, and underlining that the mere presence of UCP1 is insufficient to draw conclusions on the therapeutic potential of browning agents.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Termogênese , Hormônios Tireóideos/metabolismo , Tecido Adiposo Bege/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650649

RESUMO

24-hour rhythms in physiology and behaviour are organized by a body-wide network of endogenous circadian clocks. In mammals, a central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) integrates external light information to adapt cellular clocks in all tissues and organs to the external light-dark cycle. Together, central and peripheral clocks co-regulate physiological rhythms and functions. In this review, we outline the current knowledge about the routes of communication between the environment, the main pacemakers and the downstream clocks in the body, focusing on what we currently know and what we still need to understand about the communication mechanisms by which centrally and peripherally controlled timing signals coordinate physiological functions and behaviour. We highlight recent findings that shed new light on the internal organization and function of the SCN and neuroendocrine mechanisms mediating clock-to-clock coupling. These findings have implications for our understanding of circadian network entrainment and for potential manipulations of the circadian clock system in therapeutic settings.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comunicação , Mamíferos/fisiologia , Animais , Humanos , Transdução de Sinais , Fatores de Tempo
19.
Toxicol Appl Pharmacol ; 363: 57-63, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30502393

RESUMO

Dimethoate (DMT), a widely used Organophosphorous insecticide, was administered for 5 weeks (sub-chronic) at low dose (15 mg/kg b.w.) to male Wistar rats with the aim to simulate potential exposure to pesticide residues in food and water. The induction of cell death programs was investigated in two brain regions, cortex (Cx) and substantia nigra (SN), after the exposure period. We found that DMT increased cytochrome C (CytC) release from mitochondria, the Bax/Bcl-2 ratio, the activity of caspase-3 and calpains, in both brain regions compared to VEH injected ones. DMT treatment induced oxidative damage of lipids with a consequent enrichment in saturated over unsaturated fatty acids. However, the activity of mitochondrial respiratory complexes was not affected by DMT treatment. The activation of the pro-apoptotic pathway can be correlated with a decrease of TH-immunoreactive neurons in SN, comparable to the reduction observed in this cell population by aging. The results of this work contribute to understand the toxic mechanism of DMT and the possible etiological role that residues of this insecticide, might play in neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Dimetoato/toxicidade , Inseticidas/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Neurônios/patologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Ácidos Graxos Insaturados/metabolismo , Humanos , Masculino , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Testes de Toxicidade Subcrônica , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Neural Plast ; 2018: 5689165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593783

RESUMO

An intact communication between circadian clocks and the stress system is important for maintaining physiological homeostasis under resting conditions and in response to external stimuli. There is accumulating evidence for a reciprocal interaction between both-from the systemic to the molecular level. Disruption of this interaction by external factors such as shiftwork, jetlag, or chronic stress increases the risk of developing metabolic, immune, or mood disorders. From experiments in rodents, we know that both systems maturate during the perinatal period. During that time, exogenous factors such as stress or alterations in the external photoperiod may critically affect-or program-physiological functions later in life. This developmental programming process has been attributed to maternal stress signals reaching the embryo, which lastingly change gene expression through the induction of epigenetic mechanisms. Despite the well-known function of the adult circadian system in temporal coordination of physiology and behavior, the role of maternal and embryonic circadian clocks during pregnancy and postnatal development is still poorly defined. A better understanding of the circadian-stress crosstalk at different periods of development may help to improve stress resistance and devise preventive and therapeutic strategies against chronic stress-associated disorders.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Feminino , Glucocorticoides/efeitos adversos , Glucocorticoides/metabolismo , Humanos , Gravidez , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA