Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920694

RESUMO

Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their clinical utility in transplantation to induce tolerance and to improve/replace pharmacological immunosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological naivety and peculiar anti-inflammatory and anti-apoptotic properties. OBJECTIVES: The objective of this study was to obtain an inventory of CB MSCs able to support large-scale advanced therapy medicinal product (ATMP)-based clinical trials. STUDY DESIGN: We isolated MSCs by plastic adherence in a GMP-compliant culture system. We established a well-characterized master cell bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for therapeutic use, following single-patient authorization as an immune-suppressant agent. RESULTS: We show the feasibility of a well-defined MSC manufacturing process and describe the main indications for which the MSCs were employed. We delve into a regulatory framework governing advanced therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease, nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results were reported. Clinical response was registered in the majority of patients treated under therapeutic use authorization. CONCLUSIONS: Our 10 years of experience with MSC(CB) described here provides valuable insights into the use of this innovative cell product in immune-mediated diseases.


Assuntos
Sangue Fetal , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Controle de Qualidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Sangue Fetal/citologia , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Adulto , Pessoa de Meia-Idade , Adolescente , Idoso , Adulto Jovem , Criança
3.
Front Immunol ; 14: 1229540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675107

RESUMO

The successful treatment of patients affected by B-cell malignancies with Chimeric Antigen Receptor (CAR)-T cells represented a breakthrough in the field of adoptive cell therapy (ACT). However, CAR-T therapy is not an option for every patient, and several needs remain unmet. In particular, the production of CAR-T cells is expensive, labor-intensive and logistically challenging; additionally, the toxicities deriving from CAR-T cells infusion, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), have been documented extensively. Alternative cellular therapy products such as Cytokine-induced killer (CIK) cells have the potential to overcome some of these obstacles. CIK cells are a heterogeneous population of polyclonal CD3+CD56+ T cells with phenotypic and functional properties of NK cells. CIK cell cytotoxicity is exerted in a major histocompatibility complex (MHC)-unrestricted manner through the engagement of natural killer group 2 member D (NKG2D) molecules, against a wide range of hematological and solid tumors without the need for prior antigen exposure or priming. The foremost potential of CIK cells lies in the very limited ability to induce graft-versus-host disease (GvHD) reactions in the allogeneic setting. CIK cells are produced with a simple and extremely efficient expansion protocol, which leads to a massive expansion of effector cells and requires a lower financial commitment compared to CAR-T cells. Indeed, CAR-T manufacturing involves the engineering with expensive GMP-grade viral vectors in centralized manufacturing facilities, whereas CIK cell production is successfully performed in local academic GMP facilities, and CIK cell treatment is now licensed in many countries. Moreover, the toxicities observed for CAR-T cells are not present in CIK cell-treated patients, thus further reducing the costs associated with hospitalization and post-infusion monitoring of patients, and ultimately encouraging the delivery of cell therapies in the outpatient setting. This review aims to give an overview of the limitations of CAR-T cell therapy and outline how the use of CIK cells could overcome such drawbacks thanks to their unique features. We highlight the undeniable advantages of using CIK cells as a therapeutic product, underlying the opportunity for further research on the topic.


Assuntos
Células Matadoras Induzidas por Citocinas , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/genética
4.
Hematology ; 28(1): 2182056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36856520

RESUMO

OBJECTIVE: Polycythemia Vera (PV) is a myeloproliferative neoplasm characterized by the overproduction of red blood cells. First-line therapies are directed at lowering hematocrit levels. After the discovery of a mutation in the Janus kinase 2 (JAK2V617F), JAK2 inhibitors have been tested as second-line therapies. Despite these approaches, there is still the need for a major comprehension of the mechanisms involved in PV erythrocytosis and of more effective therapies. Angiotensin-converting enzyme (ACE) stimulates hematopoietic precursors proliferation and erythroid differentiation. We thus hypothesized that ACE inhibition could help in controlling erythrocytosis in PV. METHODS: We assessed the clonogenic potential by colony-forming unit (CFU) assay of mononuclear cells isolated from PV JAK2 positive or JAK2 negative patients with erythrocytosis treated with enalaprilat or losartan. RESULTS: Treatment with drugs led to a decrease of erythroid precursor frequency both in the presence and absence of JAK2 mutation, with a high extent in JAK2 positive cells and without affecting other types of precursors. No dose-dependent effect was observed. CONCLUSIONS: Our results demonstrate that ACE inhibition reduces erythroid precursor frequency, confirming the involvement of ACE in erythrocytosis despite the presence of JAK2 mutation and encouraging the hypothesis that ACE inhibitors and AT1R antagonists could help in directly managing erythrocytosis in PV.


Assuntos
Policitemia Vera , Policitemia , Humanos , Enalaprilato , Losartan , Eritrócitos
6.
Front Bioeng Biotechnol ; 10: 912617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267444

RESUMO

Current surgical options for patients requiring esophageal replacement suffer from several limitations and do not assure a satisfactory quality of life. Tissue engineering techniques for the creation of customized "self-developing" esophageal substitutes, which are obtained by seeding autologous cells on artificial or natural scaffolds, allow simplifying surgical procedures and achieving good clinical outcomes. In this context, an appealing approach is based on the exploitation of decellularized tissues as biological matrices to be colonized by the appropriate cell types to regenerate the desired organs. With specific regard to the esophagus, the presence of a thick connective texture in the decellularized scaffold hampers an adequate penetration and spatial distribution of cells. In the present work, the Quantum Molecular Resonance® (QMR) technology was used to create a regular microchannel structure inside the connective tissue of full-thickness decellularized tubular porcine esophagi to facilitate a diffuse and uniform spreading of seeded mesenchymal stromal cells within the scaffold. Esophageal samples were thoroughly characterized before and after decellularization and microperforation in terms of residual DNA content, matrix composition, structure and biomechanical features. The scaffold was seeded with mesenchymal stromal cells under dynamic conditions, to assess the ability to be repopulated before its implantation in a large animal model. At the end of the procedure, they resemble the original esophagus, preserving the characteristic multilayer composition and maintaining biomechanical properties adequate for surgery. After the sacrifice we had histological and immunohistochemical evidence of the full-thickness regeneration of the esophageal wall, resembling the native organ. These results suggest the QMR microperforated decellularized esophageal scaffold as a promising device for esophagus regeneration in patients needing esophageal substitution.

7.
Br J Cancer ; 127(5): 824-835, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715634

RESUMO

BACKGROUND: Glioblastoma is the most aggressive form of brain cancer, characterised by high proliferation rates and cell invasiveness. Despite advances in surgery and radio-chemotherapy, patients continue to have poor prognoses, with a survival rate of 14-15 months. Thus, new therapeutic strategies are needed. Non-ionising electromagnetic fields represent an emerging option given the potential advantages of safety, low toxicity and the possibility to be combined with other therapies. METHODS: Here, the anticancer activity of quantum molecular resonance (QMR) was investigated. For this purpose, three glioblastoma cell lines were tested, and the QMR effect was evaluated on cancer cell proliferation rate and aggressiveness. To clarify the QMR mechanism of action, the proteomic asset after stimulation was delineated. Mesenchymal stromal cells and astrocytes were used as healthy controls. RESULTS: QMR affected cancer cell proliferation, inducing a significant arrest of cell cycle progression and reducing cancer tumorigenicity. These parameters were not altered in healthy control cells. Proteomic analysis suggested that QMR acts not only on DNA replication but also on the machinery involved in the mitotic spindle assembly and chromosome segregation. Moreover, in a combined therapy assessment, QMR significantly enhanced temozolomide efficacy. CONCLUSIONS: QMR technology appears to be a promising tool for glioblastoma treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Proteômica , Temozolomida/farmacologia
8.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272306

RESUMO

BACKGROUND: Patients affected by aggressive B-cell malignancies who are resistant to primary or salvage chemoimmunotherapy have an extremely poor prognosis and limited therapeutic options. Promising therapeutic success has been achieved with the infusion of CD19 chimeric antigen receptor-T cells, but several limits still restrain the administration to a limited proportion of patients. This unmet clinical need might be fulfilled by an adoptive immunotherapy approach that combines cytokine-induced killer (CIK) cells and monoclonal antibodies (mAb) to the CD20 antigen. Indeed, CIK cells are an effector population endowed with antitumor activity, which can be further improved and antigen-specifically redirected by clinical-grade mAb triggering antibody-dependent cell-mediated cytotoxicity. METHODS: CIK cells were generated from peripheral blood of patients affected by different B-cell malignancies using a blinatumomab-based cell culture protocol. Effector cells were combined with the anti-CD20 mAb obinutuzumab and their therapeutic activity was assessed both in vitro and in vivo. RESULTS: CIK cells were successfully expanded in clinically relevant numbers, starting from small volumes of peripheral blood with extremely low CD3+ counts and high tumor burden. This relied on the addition of blinatumumab in culture, which leads to the simultaneous expansion of effector cells and the complete elimination of the neoplastic component. Moreover, CIK cells were highly cytotoxic in vitro against both B-cell tumor cell lines and autologous neoplastic targets, and had a significant therapeutic efficacy against a B-cell malignancy patient-derived xenograft on in vivo transfer. CONCLUSIONS: The combination of an easily expandable CIK cell effector population with a mAb already in clinical use establishes a tumor antigen-specific redirection strategy that can be rapidly translated into clinical practice, providing an effective therapeutic alternative for B-cell malignancies without any need for genetic modifications. Additionally, the approach can be potentially applied to an extremely vast array of different tumors by simply substituting the targeting mAb.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Células Matadoras Induzidas por Citocinas/metabolismo , Linfoma de Células B/tratamento farmacológico , Idoso , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Feminino , Humanos , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos NOD
9.
Stem Cell Res Ther ; 12(1): 316, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078447

RESUMO

Coronavirus disease 2019 (COVID-19) may result in a life-threatening condition due to a hyperactive immune reaction to severe acute respiratory syndrome-coronavirus-2 infection, for which no effective treatment is available. Based on the potent immunomodulatory properties of mesenchymal stromal cells (MSCs), a growing number of trials are ongoing. This prompted us to carry out a thorough immunological study in a patient treated with umbilical cord-derived MSCs and admitted to the Intensive Care Unit for COVID-19-related pneumonia. The exploratory analyses were assessed on both peripheral blood and bronchoalveolar fluid lavage samples at baseline and after cellular infusion by means of single-cell RNA sequencing, flow cytometry, ELISA, and functional assays. Remarkably, a normalization of circulating T lymphocytes count paralleled by a reduction of inflammatory myeloid cells, and a decrease in serum levels of pro-inflammatory cytokines, mostly of interleukin-6 and tumor necrosis factor-α, were observed. In addition, a drop of plasma levels of those chemokines essential for neutrophil recruitment became evident that paralleled the decrease of lung-infiltrating inflammatory neutrophils. Finally, circulating monocytes and low-density gradient neutrophils acquired immunosuppressive function. This scenario was accompanied by an amelioration of respiratory, renal, inflammatory, and pro-thrombotic indexes. Our results provide the first immunological data possibly related to the use of umbilical cord-derived MSCs in severe COVID-19 context.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , SARS-CoV-2 , Cordão Umbilical
10.
Heliyon ; 7(2): e06036, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33553772

RESUMO

Mesenchymal stromal cells (MSC) are attractive candidates for the treatment of acute graft versus host disease (aGvHD) or autoimmune disorders. However, mechanisms of MSC recognition remain unclear and there are evidences that MSC are not totally immunoprivileged. Data suggest that MSC undergo apoptosis after infusion in presence of cytotoxic cells and their death could drive immunosuppression. In GvHD patients, that activity was associated with clinical response. It is mandatory to develop an in vitro potency testing predictor of the "in vivo" response to the therapy. We describe a flow cytometric assay based on differential immunostaining of target and effector cells where BM MSC are enumerated with fluorospheres to determine the loss of target cells after co-culture with PB MNC. 6/13 (46%) of BM MSC lots were lysed by PB MNC and the lysis was proportional to the E/T cell ratio. The method overcomes the problems linked to the use of dyes or radioactive, evidencing the limitations linked to the use of a single vital dye and proposing a precise gating strategy based on absolute cell counts where cells are left untouched. The assay is easy and could be used to predict the response of the patients to the therapy.

11.
Br J Pharmacol ; 178(2): 262-279, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140850

RESUMO

In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Preparações Farmacêuticas , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Neoplasias/tratamento farmacológico
12.
J Transl Med ; 18(1): 451, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256746

RESUMO

BACKGROUND: During the coronavirus disease-2019 (COVID-19) pandemic, Italian hospitals faced the most daunting challenges of their recent history, and only essential therapeutic interventions were feasible. From March to April 2020, the Laboratory of Advanced Cellular Therapies (Vicenza, Italy) received requests to treat a patient with severe COVID-19 and a patient with acute graft-versus-host disease with umbilical cord-derived mesenchymal stromal cells (UC-MSCs). Access to clinics was restricted due to the risk of contagion. Transport of UC-MSCs in liquid nitrogen was unmanageable, leaving shipment in dry ice as the only option. METHODS: We assessed effects of the transition from liquid nitrogen to dry ice on cell viability; apoptosis; phenotype; proliferation; immunomodulation; and clonogenesis; and validated dry ice-based transport of UC-MSCs to clinics. RESULTS: Our results showed no differences in cell functionality related to the two storage conditions, and demonstrated the preservation of immunomodulatory and clonogenic potentials in dry ice. UC-MSCs were successfully delivered to points-of-care, enabling favourable clinical outcomes. CONCLUSIONS: This experience underscores the flexibility of a public cell factory in its adaptation of the logistics of an advanced therapy medicinal product during a public health crisis. Alternative supply chains should be evaluated for other cell products to guarantee delivery during catastrophes.


Assuntos
COVID-19/terapia , Atenção à Saúde/organização & administração , Gelo-Seco , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sistemas Automatizados de Assistência Junto ao Leito/organização & administração , Meios de Transporte , Doença Aguda , COVID-19/epidemiologia , COVID-19/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Atenção à Saúde/normas , Equipamentos e Provisões Hospitalares/normas , Equipamentos e Provisões Hospitalares/provisão & distribuição , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Humanos , Itália/epidemiologia , Administração de Materiais no Hospital/organização & administração , Administração de Materiais no Hospital/normas , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/fisiologia , Organização e Administração/normas , Pandemias , Fenótipo , Sistemas Automatizados de Assistência Junto ao Leito/normas , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Meios de Transporte/métodos , Meios de Transporte/normas
13.
Cytotherapy ; 22(9): 511-518, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32631696

RESUMO

Cytokine-Induced (CIK) cells represent an attractive approach for cell-based immunotherapy, as they show several advantages compared with other strategies. Here we describe an original serum-free protocol for CIK cell expansion that employs G-Rex devices and compare the resulting growth, viability, phenotypic profile and cytotoxic activity with conventional culture in tissue flasks. CIK cells were obtained from buffy coats, seeded in parallel in G-Rex and tissue flasks, and stimulated with clinical-grade IFN-γ, anti-CD3 antibody and IL-2. G-Rex led to large numbers of CIK cells, with a minimal need for technical interventions, thus reducing the time and costs of culture manipulation. CIK cells generated in G-Rex showed a less differentiated phenotype, with a significantly higher expression of naive-associated markers such as CD62L, CD45RA and CCR7, which correlates with a remarkable expansion potential in culture and could lead to longer persistence and a more sustained anti-tumor response in vivo. The described procedure can be easily translated to large-scale production under Good Manufacturing Practice. Overall, this protocol has strong advantages over existing procedures, as it allows easier, time-saving and cost-effective production of CIK effector cells, fostering their clinical application.


Assuntos
Técnicas de Cultura de Células/instrumentação , Meios de Cultura Livres de Soro/farmacologia , Células Matadoras Induzidas por Citocinas/citologia , Gases/química , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células Matadoras Induzidas por Citocinas/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Memória Imunológica/efeitos dos fármacos , Permeabilidade , Fenótipo
14.
Therap Adv Gastroenterol ; 13: 1756284820923220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523626

RESUMO

BACKGROUND: Since the esophagus has no redundancy, congenital and acquired esophageal diseases often require esophageal substitution, with complicated surgery and intestinal or gastric transposition. Peri-and-post-operative complications are frequent, with major problems related to the food transit and reflux. During the last years tissue engineering products became an interesting therapeutic alternative for esophageal replacement, since they could mimic the organ structure and potentially help to restore the native functions and physiology. The use of acellular matrices pre-seeded with cells showed promising results for esophageal replacement approaches, but cell homing and adhesion to the scaffold remain an important issue and were investigated. METHODS: A porcine esophageal substitute constituted of a decellularized scaffold seeded with autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) was developed. In order to improve cell seeding and distribution throughout the scaffolds, they were micro-perforated by Quantum Molecular Resonance (QMR) technology (Telea Electronic Engineering). RESULTS: The treatment created a microporous network and cells were able to colonize both outer and inner layers of the scaffolds. Non seeded (NSS) and BM-MSCs seeded scaffolds (SS) were implanted on the thoracic esophagus of 4 and 8 pigs respectively, substituting only the muscle layer in a mucosal sparing technique. After 3 months from surgery, we observed an esophageal substenosis in 2/4 NSS pigs and in 6/8 SS pigs and a non-practicable stricture in 1/4 NSS pigs and 2/8 SS pigs. All the animals exhibited a normal weight increase, except one case in the SS group. Actin and desmin staining of the post-implant scaffolds evidenced the regeneration of a muscular layer from one anastomosis to another in the SS group but not in the NSS one. CONCLUSIONS: A muscle esophageal substitute starting from a porcine scaffold was developed and it was fully repopulated by BM-MSCs after seeding. The substitute was able to recapitulate in shape and function the original esophageal muscle layer.

15.
Sci Rep ; 8(1): 9321, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915318

RESUMO

Human multipotent mesenchymal stromal cells (MSC) are isolated from a plethora of tissue sources for cell therapy purposes. In 2006, the International Society for Cellular Therapy (ISCT) published minimal guidelines to define MSC identity. Nevertheless, many independent studies demonstrated that cells meeting the ISCT criteria possessed heterogeneous phenotypes and functionalities, heavily influenced by culture conditions. In this study, human MSC derived from many adult (bone marrow and adipose tissue) or fetal (cord blood, Wharton's jelly, umbilical cord perivascular compartment and amniotic fluid) tissues were investigated. Their immunophenotype was analyzed to define consistent source-specific markers by extensive flow cytometry analysis and real-time qRT-PCR. CD271+ subpopulations were detected in adult MSC, whereas NG2 was significantly more expressed in fetal MSC but failed validation on independent samples coming from an external laboratory. The highest number of CD271+ adult MSC were detected soon after isolation in serum-based culture conditions. Furthermore, heterogeneous percentages of CD271 expression were found in platelet lysate-based or serum-free culture conditions. Finally, CD271+ adult MSC showed high clonogenic and osteogenic properties as compared to CD271- cells. To conclude, in this phenotype-function correlation study CD271+ subpopulation confers heterogeneity on adult MSC, confirming the need of more specific markers to address MSC properties.


Assuntos
Adapaleno/metabolismo , Células-Tronco Adultas/metabolismo , Células-Tronco Fetais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adulto , Biomarcadores/metabolismo , Forma Celular , Células Cultivadas , Células Clonais , Análise por Conglomerados , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo
16.
Stem Cell Res Ther ; 9(1): 124, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720245

RESUMO

BACKGROUND: The use of platelet lysate (PL) for the ex-vivo expansion of mesenchymal stromal/stem cells (MSCs) was initially proposed by Doucet et al. in 2005, as an alternative to animal serum. Moreover, regulatory authorities discourage the use of fetal bovine serum (FBS) or other animal derivatives, to avoid risk of zoonoses and xenogeneic immune reactions. Even if many studies investigated PL composition, there still are some open issues related to its use in ex-vivo MSC expansion, especially according to good manufacturing practice (GMP) grade protocols. METHODS: As an authorized cell factory, we report our experience using standardized PL produced by Azienda Ospedaliero Universitaria Meyer Transfusion Service for MSC expansion according to a GMP grade clinical protocol. As suggested by other authors, we performed an in-vitro test on MSCs versus MSCs cultured with FBS that still represents the best way to test PL batches. We compared 12 MSC batches cultured with DMEM 5% PL with similar batches cultured with DMEM 10% FBS, focusing on the MSC proliferation rate, MSC surface marker expression, MSC immunomodulatory and differentiation potential, and finally MSC relative telomere length. RESULTS: Results confirmed the literature data as PL increases cell proliferation without affecting the MSC immunophenotype, immunomodulatory potential, differentiation potential and relative telomere length. CONCLUSIONS: PL can be considered a safe alternative to FBS for ex-vivo expansion of MSC according to a GMP grade protocol. Our experience confirms the literature data: a large number of MSCs for clinical applications can be obtained by expansion with PL, without affecting the MSC main features. Our experience underlines the benefits of a close collaboration between the PL producers (transfusion service) and the end users (cell factory) in a synergy of skills and experiences that can lead to standardized PL production.


Assuntos
Plaquetas/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Meios de Cultura , Humanos
17.
Stem Cell Res Ther ; 9(1): 10, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338788

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSC) are a heterogeneous population of multipotent progenitors used in the clinic because of their immunomodulatory properties and their ability to differentiate into multiple mesodermal lineages. Although bone marrow (BM) remains the most common MSC source, cord blood (CB) can be collected noninvasively and without major ethical concerns. Comparative studies comprehensively characterizing the MSC phenotype across several tissue sources are still lacking. This study provides a 246-antigen immunophenotypic analysis of BM- and CB-derived MSC aimed at identifying common and strongly expressed MSC markers as well as the existence of discriminating markers between the two sources. METHODS: BM-MSC (n = 4) were expanded and analyzed as bulk (n = 6) or single clones isolated from the bulk culture (n = 3). CB-MSC (n = 6) were isolated and expanded as single clones in 5/6 samples. The BM-MSC and CB-MSC phenotype was investigated by flow cytometry using a panel of 246 monoclonal antibodies. To define the markers common to both sources, those showing the smallest variation between samples (coefficient of variation of log2 fold increase ≤ 0.5, n = 59) were selected for unsupervised hierarchical cluster analysis (HCL). Differentially expressed markers were identified by directly comparing the expression of all 246 antigens between BM-MSC and CB-MSC. RESULTS: Based on HCL, 18 markers clustered as strongly expressed in BM-MSC and CB-MSC, including alpha-smooth muscle antigen (SMA), beta-2-microglobulin, CD105, CD13, CD140b, CD147, CD151, CD276, CD29, CD44, CD47, CD59, CD73, CD81, CD90, CD98, HLA-ABC, and vimentin. All except CD140b and alpha-SMA were suitable for the specific identification of ex-vivo expanded MSC. Notably, only angiotensin-converting enzyme (CD143) was exclusively expressed on BM-MSC. CD143 expression was tested on 10 additional BM-MSC and CB-MSC and on 10 umbilical cord- and adipose tissue-derived MSC samples, confirming that its expression is restricted to adult sources. CONCLUSIONS: This is the first study that has comprehensively compared the phenotype of BM-MSC and CB-MSC. We have identified markers that could complement the minimal panel proposed for the in-vitro MSC definition, being shared and strongly expressed by BM- and CB-derived MSC. We have also identified CD143 as a marker exclusively expressed on MSC derived from adult tissue sources. Further studies will elucidate the biological role of CD143 and its potential association with tissue-specific MSC features.


Assuntos
Antígenos CD/sangue , Biomarcadores/sangue , Células da Medula Óssea/citologia , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Peptidil Dipeptidase A/metabolismo , Adulto , Proliferação de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Cordão Umbilical/citologia , Adulto Jovem
18.
PLoS One ; 13(1): e0190082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293552

RESUMO

Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4-64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling.


Assuntos
Células-Tronco Mesenquimais/citologia , Teoria Quântica , Adulto , Campos Eletromagnéticos , Feminino , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/imunologia , Pessoa de Meia-Idade , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
19.
J Transl Med ; 15(1): 90, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460641

RESUMO

BACKGROUND: The use of fetal bovine serum (FBS) as a media supplement for the ex vivo expansion of bone-marrow derived mesenchymal stromal cells (BM-MSC) has been discouraged by regulatory agencies, due to the risk of transmitting zoonoses and to elicit immune reactions in the host once transplanted. Platelet derivatives are valid FBS substitutes due to their content of growth factors that can be released disrupting the platelets by physical methods or physiological stimuli. We compared platelet derivatives produced by freezing/thawing (platelet lysates, PL) or after CaCl2 activation (platelet releasate surnatant rich in growth factors, PR-SRGF) for their content in growth factors and their ability to support the ex vivo expansion of BM-MSC. METHODS: The cytokine content in the two platelet derivatives was evaluated. BM-MSC were expanded in complete medium containing 10, 7.5 and 5% PL or PR-SRGF and the cell phenotype, clonogenic capacity, immunomodulation properties and tri-lineage differentiation potential of the expanded cells in both media were investigated. RESULTS: The concentration of PDGF-AB, PDGF-AA, PDGF-BB in PR-SRGF resulted to be respectively 5.7×, 1.7× and 2.3× higher compared to PL. PR-SRGF promoted a higher BM-MSC proliferation rate compared to PL not altering BM-MSC phenotype. Colony forming efficiency of BM-MSC expanded in PR-SRGF showed a frequency of colonies significantly higher than cells expanded in PL. BM-MSC expanded in PL or PR-SRGF maintained their immunomodulatory properties against activated lymphocytes even if BM-MSC expanded in FBS performed significantly better. CONCLUSIONS: The method used to release platelet factors significantly affects the enrichment in growth factors and overall product performance. The standardization of the production process of platelet derivatives and the definition of their release criteria requires further investigation.


Assuntos
Plaquetas/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Humanos , Imunomodulação , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
20.
J Transl Med ; 15(1): 107, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526045

RESUMO

BACKGROUND: Standardized animal-free components are required for manufacturing cell-based medicinal products. Human platelet concentrates are sources of growth factors for cell expansion but such products are characterized by undesired variability. Pooling together single-donor products improves consistency, but the minimal pool sample size was never determined. METHODS: Supernatant rich in growth factors (SRGF) derived from n = 44 single-donor platelet-apheresis was obtained by CaCl2 addition. n = 10 growth factor concentrations were measured. The data matrix was analyzed by a novel statistical algorithm programmed to create 500 groups of random data from single-donor SRGF and to repeat this task increasing group statistical sample size from n = 2 to n = 20. Thereafter, in created groups (n = 9500), the software calculated means for each growth factor and, matching groups with the same sample size, the software retrieved the percent coefficient of variation (CV) between calculated means. A 20% CV was defined as threshold. For validation, we assessed the CV of concentrations measured in n = 10 pools manufactured according to algorithm results. Finally, we compared growth rate and differentiation potential of adipose-derived stromal/stem cells (ASC) expanded by separate SRGF pools. RESULTS: Growth factor concentrations in single-donor SRGF were characterized by high variability (mean (pg/ml)-CV); VEGF: 950-81.4; FGF-b: 27-74.6; PDGF-AA: 7883-28.8; PDGF-AB: 107834-32.5; PDGF-BB: 11142-48.4; Endostatin: 305034-16.2; Angiostatin: 197284-32.9; TGF-ß1: 68382-53.7; IGF-I: 70876-38.3; EGF: 2411-30.2). In silico performed analysis suggested that pooling n = 16 single-donor SRGF reduced CV below 20%. Concentrations measured in 10 pools of n = 16 single SRGF were not different from mean values measured in single SRGF, but the CV was reduced to or below the threshold. Separate SRGF pools failed to differently affect ASC growth rate (slope pool A = 0.6; R2 = 0.99; slope pool B = 0.7; R2 0.99) or differentiation potential. DISCUSSION: Results deriving from our algorithm and from validation utilizing real SRGF pools demonstrated that pooling n = 16 single-donor SRGF products can ameliorate variability of final growth factor concentrations. Different pools of n = 16 single donor SRGF displayed consitent capability to modulate growth and differentiation potential of expanded ASC. Increasing the pool size should not further improve product composition.


Assuntos
Algoritmos , Plaquetas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/normas , Ensaios Clínicos como Assunto , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pessoa de Meia-Idade , Plasma Rico em Plaquetas/metabolismo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA