Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36294671

RESUMO

Ibrexafungerp is a novel triterpenoid antifungal that inhibits glucan synthase and thus fungal cell wall synthesis. We examined the in vitro activity against contemporary clinical yeast, investigated inter-laboratory and intra-laboratory variability, suggested wild-type upper-limit values (WT-UL), and compared in vitro activity of ibrexafungerp to five licensed antifungals. Susceptibility to ibrexafungerp and comparators was investigated prospectively for 1965 isolates (11,790 MICs) and repetitively for three QC strains (1764 MICs) following the EUCAST E.Def 7.3.2 method. Elevated ibrexafungerp/echinocandin MICs prompted FKS sequencing. Published ibrexafungerp EUCAST MIC-distributions were retrieved and aggregated for WT-UL determinations following EUCAST principles. Ibrexafungerp MICs were ≤2 mg/L except against C. pararugosa, Cryptococcus and some rare yeasts. Modal MICs (mg/L) were 0.06/0.125/0.25/0.5/0.5/0.5/0.5/1/2 for C. albicans/C. dubliniensis/C. glabrata/C. krusei/C. parapsilosis/C. tropicalis/S. cerevisiae/C. guilliermondii/C. lusitaniae and aligned within ±1 dilution with published values. The MIC ranges for QC strains were: 0.06-0.25/0.5-1/0.125-0.5 for CNM-CL-F8555/ATCC6258/ATCC22019. The WT-UL (mg/L) were: 0.25/0.5/1/1/2 for C. albicans/C. glabrata/C. krusei/C. parapsilosis/C. tropicalis. Adopting these, non-wild-type rates were 0.3%/0.6%/0%/8%/3% for C. albicans/C. glabrata/C. krusei/C. parapsilosis/C. tropicalis and overall lower than for comparators except amphotericin B. Five/six non-wild-type C. albicans/C. glabrata were echinocandin and Fks non-wild-type (F641S, F659del or F659L). Eight C. parapsilosis and three C. tropicalis non-wild-type isolates were echinocandin and Fks wild-type. Partial inhibition near 50% in the supra-MIC range may explain variable MICs. Ibrexafungerp EUCAST MIC testing is robust, although the significance of paradoxical growth for some species requires further investigation. The spectrum is broad and will provide an oral option for the growing population with azole refractory infection.

2.
J Antimicrob Chemother ; 77(5): 1296-1300, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35194639

RESUMO

OBJECTIVES: Current reference susceptibility testing methods of Aspergillus require visual reading, which is subjective and necessitates experienced staff. We compared spectrophotometric and visual MIC reading of EUCAST E.Def 9.3.2 susceptibility testing of Aspergillus fumigatus for a large collection of isolates with different azole resistance mechanisms. METHODS: A. fumigatus (n = 200) were examined, including 62 WT and 138 non-WT with the following alterations: TR34/L98H (n = 57), TR46/Y121F/T289A (n = 54) or single point mutations (n = 27). EUCAST E.Def 9.3.2 susceptibility testing was performed for amphotericin B, itraconazole, voriconazole, posaconazole and isavuconazole. MICs were determined after 48 h of incubation visually and spectrophotometrically, as the lowest concentration corresponding to a 1%, 3%, 5%, 10% or 15% OD increase above the background OD. The best spectrophotometric endpoint (SPE) was identified based on the highest essential agreement (EA; ±1 two-fold dilution) and categorical agreement (CA) and fewer very major errors (VMEs) and major errors (MEs). RESULTS: Τhe best SPEs were 5% and 10% for all drugs. The best agreement between visual and spectrophotometric MICs was found with the 10% growth endpoint, which resulted in identical median MICs with 90% of differences being ≤1 two-fold and higher EA (91%-100%) and CA (100%) and no VMEs and MEs compared with the 5% endpoint (77%-100%, 96%-98%, 0% and 0%-4%, respectively). CONCLUSIONS: Spectrophotometric MIC reading can be used for A. fumigatus susceptibility testing and for detecting azole resistance. A visual inspection of the plate should be performed to confirm equal inoculation, absence of well contamination and proper growth, and to identify potential uncommon phenotypes or subpopulations.


Assuntos
Aspergillus fumigatus , Azóis , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Leitura
3.
Artigo em Inglês | MEDLINE | ID: mdl-32513793

RESUMO

Manogepix (APX001A) is the active moiety of the drug candidate fosmanogepix (APX001), currently in clinical development for the treatment of invasive fungal infections. We compared manogepix EUCAST minimum effective concentrations (MECs) to MICs of five comparators and CLSI MECs and MICs by a colorimetric method against contemporary molds. EUCAST susceptibility testing was performed for 161 isolates. Interlaboratory and intermethod reproducibility were determined by comparison with published manogepix MECs. Colorimetric MICs (measuring metabolic activity) were evaluated using three Aspergillus fumigatus isolates and one Aspergillus flavus isolate with four inocula at 24 to 48 h of incubation and 1 to 3 h 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT)/menadione (MEN) exposure. Manogepix modal MECs (range in mg/liter) against Aspergillus species were 0.03 to 0.06 (0.008 to 0.125) and unaffected by itraconazole resistance. Manogepix was as active against two Fusarium isolates but inactive against Trichophyton interdigitale, Lichtheimia ramosa, and Rhizomucor pusillus isolates (MECs >0.5). Modal MEC/MICs were ≥3 2-fold dilutions apart without overlapping ranges comparing manogepix with amphotericin B, isavuconazole, and voriconazole against Aspergillus isolates. Manogepix and posaconazole MECs/MICs correlated for Aspergillus niger (Pearson's r = 0.711; P = 0.0044). The MEC at which 50% of the isolates tested are inhibited (MEC50), mode, and MEC90 values were within ±1 dilution in all cases compared with published EUCAST and CLSI data. The colorimetric method showed excellent agreement with the MECs when plates were inoculated with the lowest inoculum (1 × 102 CFU/ml to 2.5 × 102 CFU/ml), incubated for 24 h, and exposed for 1 to 3 h to XTT/MEN. Broad-spectrum in vitro activity of manogepix against clinically relevant molds was confirmed with excellent agreement across EUCAST and CLSI methods reported from experienced mycology laboratories. Colorimetric MIC determination warrants further investigation as a potential alternative that is less dependent on mycology expertise.


Assuntos
Antifúngicos , Colorimetria , Aminopiridinas , Antifúngicos/farmacologia , Arthrodermataceae , Humanos , Isoxazóis , Testes de Sensibilidade Microbiana , Mucorales , Reprodutibilidade dos Testes , Rhizomucor
5.
Artigo em Inglês | MEDLINE | ID: mdl-30104264

RESUMO

APX001A is the active moiety of the first-in-class drug candidate APX001. So far, most susceptibility testing studies have examined ≤30 isolates/species, and only one used the EUCAST method. Here, we investigated the in vitro activity of APX001A and five comparators against 540 candidemia and 122 C. auris isolates. Isolates (17 Candida and 3 yeast species) were identified using CHROMagar, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and, when needed, internal transcribed space (ITS) sequencing. EUCAST E.Def 7.3.1 susceptibility testing included APX001A, amphotericin B, anidulafungin, micafungin, fluconazole, and voriconazole. Wild-type upper limits (WT-UL) were established following the EUCAST principles for epidemiological cutoff value setting for APX001A, allowing classification as wild type (WT) or non-WT. APX001A MIC50 values (mg/liter) were as follows: Candida albicans, Candida dubliniensis, and Candida tropicalis, 0.004 to 0.008; Candida parapsilosis and Candida auris, 0.016; Candida glabrata, 0.06; and Candida krusei, >0.5. APX001A MICs against the rare species varied from ≤0.0005 (C. pelliculosa) to >0.5 (Candida norvegensis). APX001A was equally or more active in vitro than the comparators against all species except C. krusei and C. norvegensis Four isolates were APX001A non-WT; all were fluconazole resistant. A correlation was observed between APX001A and fluconazole MICs across all species except Candida guilliermondii and C. auris, and when comparing high and low fluconazole MIC isolates of C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, and C. auris APX001A showed promising in vitro activity against most Candida and other yeast species, including C. auris, compared to five comparators. WT-UL were suggested for the common species, and a new and unexplained correlation to fluconazole susceptibility was observed.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Anfotericina B/farmacologia , Anidulafungina/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Azóis/farmacologia , Candida/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/genética , Candidemia/microbiologia , Equinocandinas/farmacologia , Fluconazol/farmacologia , Micafungina/farmacologia , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Voriconazol/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-29784842

RESUMO

Olorofim is a novel antifungal agent with in vitro activity against Aspergillus and some other molds. Here, we addressed technical aspects for EUCAST olorofim testing and generated contemporary MIC data. EUCAST E.Def 9.3.1 testing was performed comparing two plate preparation methods (serial dilution in medium [serial plates] versus predilution in DMSO [ISO plates]), two lots of olorofim, visual (visual-MIC) versus spectrophotometer (spec-MIC) reading, and four polystyrene plates using 34 to 53 Aspergillus isolates from five genera. Subsequently, olorofim MICs were compared to itraconazole, voriconazole, posaconazole, and amphotericin B MICs for 298 clinical mold isolates (2016 to 2017). Wild-type upper limits (WT-UL) were determined following EUCAST principles for epidemiologic cutoff value (ECOFF) setting. Olorofim median MICs comparing serial plates and ISO plates were identical (25/36 [69%]) or one dilution apart (11/36 [31%]). Interperson agreement for visual-MICs was 92% to 94%/100% for ≤1/≤2 dilutions, respectively. The visual-MIC values across tested microtiter plates and olorofim lots revealed only discrete differences (≤1 dilution lower for treated plates). No single spec-MIC criterion was applicable to all species. Olorofim MICs were low against 275 Aspergillus species isolates (modal MIC, 0.06 mg/liter; MIC range, < 0.004 to 0.25 mg/liter) and three dermatophytes (MICs 0.03 to 0.06 mg/liter). MICs against Fusarium were diverse, with full inhibition of F. proliferatum (MIC, 0.016), 50% growth inhibition of Fusarium solani at 1 to 2 mg/liter, and no inhibition of F. dimerum Olorofim displayed potent in vitro activity against most mold isolates and was associated with limited variation in EUCAST susceptibility testing.


Assuntos
Acetamidas/farmacologia , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Bioensaio/normas , Fusarium/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Anfotericina B/farmacologia , Aspergillus/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Guias como Assunto , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes , Triazóis/farmacologia , Voriconazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA