Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 2): 113856, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35850293

RESUMO

Sewage sludge is rich source of carbon, nutrients, and trace elements and can be subjected to proper treatment before disposal to fulfill government legislation and protect receiving environments. Anaerobic digestion (AD) is a well-adopted technology for stabilizing sewage sludge and recovering energy-rich biogas and nutrient-rich digestate. However, a slow hydrolysis rate limits the biodegradability of sludge. In the present study we have attempted to explain the potential of thermal hydrolysis to enhance anaerobic digestion of sewage sludge. Thermal pretreatment improves biodegradability and recycling of the sludge as an excellent energy and nutrients recovery source at reasonable capital (CAPEX) and operational (OPEX) costs. Other pretreatments like conventional (below/above 100 °C), temperature-phased anaerobic digestion (TPAD), microwave and chemically mediated thermal pretreatment have also been accounted. This review provides a holistic overview of sludge's characterization and value-added properties, various techniques used for sludge pretreatment for resource recovery, emphasizing conventional and advanced thermal pretreatment, challenges in scale-up of these technologies, and successful commercialization of thermal pretreatment techniques.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Hidrólise , Metano , Esgotos/química , Temperatura , Eliminação de Resíduos Líquidos/métodos
2.
Environ Dev Sustain ; : 1-39, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530442

RESUMO

Abstract: The global market for fuel pellets (FPs) has been steadily growing because of a shift to coal substitutes. However, sustainability and the availability of biomass are the main issues. Various kinds of bio-wastes can be valorized through cutting-edge technologies. In the coffee industry, a valuable organic waste called spent coffee grounds (SCGs) is generated in bulk. SCG can be divided into two components, namely spent coffee ground oil and defatted spent coffee grounds (DSCG). SCG and DSCG can be used to produce FPs with excellent higher heating values. This review highlights that burning FPs composed of 100% SCG is not feasible due to the high emission of NOx. Moreover, the combustion is accompanied by a rapid temperature drop due to incomplete combustion which leads to lower boiler combustion efficiencies and increased carbon monoxide emissions. This was because of the low pellet strength and bulk density of the FP. Mixing SCG with other biomass offers improved boiler efficiency and emissions. Some of the reported optimized FPs include 75% SCG + 20% coffee silverskin, 30% SCG + 70% pine sawdust, 90% SCG + 10% crude glycerol, 32% SCG + 23% coal fines + 11% sawdust + 18% mielie husks + 10% waste paper + 6% paper pulp, and 50% SCG + 50% pine sawdust. This review noted the absence of combustion and emissions analyses of DSCG and the need for their future assessment. Valorization of DSCG offers a good pathway to improve the economics of an SCG-based biorefinery where the extracted SCGO can be valorized in other applications. The combustion and emissions of DSCG were not previously reported in detail. Therefore, future investigation of DSCG in boilers is essential to assess the potential of this industry and improve its economics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10668-022-02361-z.

3.
Chemosphere ; 286(Pt 2): 131730, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34364231

RESUMO

Coffee is a globally consumed beverage that produces a substantial amount of valuable organic waste known as spent coffee grounds (SCG). Although SCG is a non-edible biomass, research initiatives focused on valorizing/utilizing its organic content, protecting the environment, and reducing the high oxygen demand required for its natural degradation. The integration with biorefinery in general and with pyrolysis process in specific is considerered the most successful solid waste management strategy of SCG that produce energy and high-value products. This paper aims at providing a quantitative analysis and discussion of research work done over the last 20 years on SCG as a feedstock in the circular bioeconomy (CBE). Management stratigies of SCG have been thoroughly reviewed and pyrolysis process has been explored as a novel technology in CBE. Results revealed that explored articles belong to Chemical, physical., biological and environmental science branches, with Energy & Fuels as the most reporting themes. Published works correlate SCG to renewable energy, biofuel, and bio-oil, with pyrolysis as a potential valorization approach. Literature review showed that only one study focused on the pyrolysis of defatted spent coffee grounds (DSCG). The insightful conclusions of this paper could assist in proposing several paths to more economically valorization of SCG through biorefinery, where extracted oil can be converted to biofuels or value-added goods. It was highlighted the importance of focusing on the coupling of SCG with CBE as solid waste managment strategy.


Assuntos
Café , Gerenciamento de Resíduos , Biocombustíveis , Pirólise , Resíduos Sólidos
4.
J Environ Manage ; 296: 113194, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243094

RESUMO

The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.


Assuntos
Biocombustíveis , Lignina , Biomassa , Fontes Geradoras de Energia
5.
Sci Total Environ ; 765: 144429, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385808

RESUMO

Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly. Dark fermentation involves anaerobic microbes which degrade carbohydrate rich substrate and produce hydrogen. Lignocellulosic biomass is an abundantly available raw material and can be utilized as an economic and renewable substrate for biohydrogen production. Although there are many hurdles, continuous advancements in lignocellulosic biomass pretreatment technology, microbial fermentation (mixed substrate and co-culture fermentation), the involvement of molecular biology techniques, and understanding of various factors (pH, T, addition of nanomaterials) effect on biohydrogen productivity and yield render this technology efficient and capable to meet future energy demands. Further integration of biohydrogen production technology with other products such as bio-alcohol, volatile fatty acids (VFAs), and methane have the potential to improve the efficiency and economics of the overall process. In this article, various methods used for lignocellulosic biomass pretreatment, technologies in trends to produce and improve biohydrogen production, a coproduction of other energy resources, and techno-economic analysis of biohydrogen production from lignocellulosic biomass are reviewed.


Assuntos
Hidrogênio , Tecnologia , Biocombustíveis , Biomassa , Características da Família , Fermentação , Hidrogênio/análise , Lignina
6.
Bioresour Technol ; 322: 124470, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338944

RESUMO

The effect of oil extraction from spent coffee grounds as a pre-treatment strategy prior to anaerobic digestion besides assessing the feasibility of defatted spent coffee grounds co-digestion with spent tea waste, glycerin, and macroalgae were examined. Mesophilic BMP tests were performed using defatted spent coffee grounds alongside four co-substrates in the ratio of 25, 50, and 75%, respectively. The highest methane yield was obtained with the mono-digestion of defatted spent coffee grounds with 336 ± 7 mL CH4/g VS and the yield increased with the increase in the mass ratio of defatted spent coffee grounds during co-digestion. Moreover, defatted spent coffee grounds showed the highest VS and TS removal at 35.5% and 32.1%, respectively and decreased thereafter. Finally, a linear regression model for the interaction effects between substrates was demonstrated and showed that distinctly mixing defatted spent coffee grounds, spent coffee grounds, and spent tea waste outperforms other triple mixed substrates.


Assuntos
Café , Metano , Anaerobiose , Biocombustíveis , Digestão , Cinética
7.
Sci Total Environ ; 751: 141599, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890799

RESUMO

Treatment of industrial and domestic wastewater is very important to protect downstream users from health risks and meet the freshwater demand of the ever-increasing world population. Different types of wastewater (textile, dairy, pharmaceutical, swine, municipal, etc.) vary in composition and require different treatment strategies. Wastewater management and treatment is an expensive process; hence, it is important to integrate relevant technology into this process to make it more feasible and cost-effective. Wastewater treatment using microalgae-based technology could be a global solution for resource recovery from wastewater and to provide affordable feedstock for bioenergy (biodiesel, biohydrogen, bio-alcohol, methane, and bioelectricity) production. Various microalgal cultivation systems (open or closed photobioreactors), turf scrubber, and hybrid systems have been developed. Although many algal biomass harvesting methods (physical, chemical, biological, and electromagnetic) have been reported, it is still an expensive process. In this review article, resource recovery from wastewater using algal cultivation, biomass harvesting, and various technologies applied in converting algal biomass into bioenergy, along with the various challenges that are encountered are discussed in brief.


Assuntos
Microalgas , Animais , Biocombustíveis , Biomassa , Fotobiorreatores , Suínos , Águas Residuárias
8.
Bioresour Technol ; 314: 123800, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32684320

RESUMO

Spent coffee grounds (SCG) are an important waste product millions of tons generated from coffee consumption and could be effectively utilized for various applications due to their high organic content. SCG can be used as a potential feedstock to develop coffee-based biorefinery towards value-added products generation through various biotechnological processes. Considerable developments have been reported on emerging SCG-based processes/products in various environmental fields such as removal of heavy metals and cationic dyes and in wastewater treatment. In addition, SCG are also utilized to produce biochar and biofuels. This review addressed the details of innovative processes used to produce polymers and catalysts from SCG. Moreover, the application of these developed products is provided and future directions of the circular economy for SCG utilization.


Assuntos
Café , Metais Pesados , Biocombustíveis , Biopolímeros , Biotecnologia
9.
Bioresour Technol ; 302: 122821, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32008862

RESUMO

The circular bioeconomy plan is an innovative research based scheme intended for augmenting the complete utilization and management of bio-based resources in a sustainable biorefinery route. Spent coffee grounds based biorefinery is the emerging aspect promoting circular bioeconomy. The sustainable circular bioeconomy by utilizing SCG is achieved by cascade approaches and the inclusion of many biorefinery approaches to obtain many bio-products. The maximum energy recovery can be obtained by process integration. The economic analysis of the biofuel production from SCG is dependent on the cost of raw material, transportation, the need of labor and energy, oil extraction operations and biofuel production. The inclusion of new products from already established product can minimize the investment cost when related to the production cost. A positive net present value can be achieved via SCG biorefinery which indicates the profitability of the process.


Assuntos
Biocombustíveis , Café
10.
Bioresour Technol ; 283: 358-372, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30928198

RESUMO

Water shortage, public health and environmental protection are key motives to treat wastewater. The widespread adoption of wastewater as a resource depends upon development of an energy-efficient technology. Anaerobic membrane bioreactor (AnMBR) technology has gained increasing popularity due to their ability to offset the disadvantages of conventional treatment technologies. However there are several hurdles, yet to climb over, for wider spread and scale-up of the technology. This paper reviews fundamental aspects of anaerobic digestion of wastewater, and identifies the challenges and opportunities to the further development of AnMBRs. Membrane fouling and its implications are discussed, and strategies to control membrane fouling are proposed. Novel AnMBR configurations are discussed as an integrated approach to overcome technology limitations. Energy demand and recovery in AnMBRs is analyzed. Finally key issues that require urgent attention to facilitate global penetration of AnMBR technology are highlighted.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/instrumentação
11.
J Air Waste Manag Assoc ; 68(3): 196-214, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28829684

RESUMO

In this study, recycling of spent coffee grounds (SCG) as a potential feedstock for alternative fuel production and compounds of added value in Turkey was assessed. The average oil content was found (≈ 13% w/w). All samples (before and after extraction) were tested for scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), calorific value, surface analysis and porosity, Fourier transform infrared (FT-IR), and elemental analysis to assess their potential towards fuel properties. Elemental analysis indicated that carbon represents the highest percentages (49.59% and 46.42%, respectively), followed by nitrogen (16.7% and 15.5%), hydrogen (6.74% and 6.04%), and sulfur (0.851% and 0.561%). These results indicate that SCG can be utilized as compost, as it is rich in nitrogen. Properties of the extracted oil were examined, followed by biodiesel production. The quality of biodiesel was compared with American Society for Testing and Materials (ASTM) D6751 standards, and all the properties complied with standard specifications. The fatty acid compositions were analyzed by gas chromatography. It was observed that coffee waste methyl ester (CWME) is mainly composed of palmitic (35.8%) and arachidic (44.6%) acids, which are saturated fatty acids. The low degree of unsaturation provides an excellent oxidation stability (10.4 hr). CWME has also excellent cetane number, higher heating value, and iodine value with poor cold flow properties. The studies also investigated blending of biodiesel with Euro diesel and butanol. Following this, a remarkable improvement in cloud and pour points of biodiesel was obtained. Spent coffee grounds after oil extraction is an ideal material for garden fertilizer, feedstock for ethanol, biogas production, and as fuel pellets. The outcome of such research work produces valuable insights on the recycling importance of SCG in Turkey. IMPLICATIONS: Coffee is a huge industry, and coffee has been widely used due to its refreshing properties. This industry generates large quantities of waste. Therefore, recycling of spent coffee grounds for producing alternative fuels and compounds of added value is crucial. Elemental analysis indicated that coffee waste can be utilized as compost, as it is rich in nitrogen. Coffee waste after oil extraction is an ideal feedstock for ethanol and biogas production, garden fertilizer, and as fuel pellets. The low degree of unsaturation provides excellent oxidation stability. Its biodiesel has also excellent cetane number, higher heating value, and lower iodine value.


Assuntos
Biocombustíveis , Café , Reciclagem , Cromatografia Gasosa , Etanol , Ácidos Graxos/análise , Ácidos Graxos/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA