Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunology ; 169(4): 467-486, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055914

RESUMO

Citrullination and homocitrullination are stress induced post-translational modifications (siPTMs) which can be recognized by T cells. Peripheral blood mononuclear cells isolated from healthy donors and rheumatoid arthritis (RA) patients were stimulated with nine siPTM-peptides. CD45RA/CD45RO depletion was employed to determine if peptide-specific responses are naïve or memory. Human leucocyte antigen (HLA)-DP4 and HLA-DR4 transgenic mice were immunized with siPTM-peptides and immune responses were determined with ex vivo ELISpot assays. The majority (24 out of 25) of healthy donors showed CD4 T cell-specific proliferation to at least 1 siPTM-peptide, 19 to 2 siPTM-peptides, 14 to 3 siPTM-peptides, 9 to 4 siPTM-peptides, 6 to 5 siPTM-peptides and 4 to 6 siPTM-peptides. More donors responded to Vim28-49cit (68%) and Bip189-208cit (75%) compared with Vim415-433cit (33%). In RA patients, the presentation of citrullinated epitopes is associated with HLA-SE alleles; however, we witnessed responses in healthy donors who did not express the SE allele. The majority of responding T cells were effector memory cells with a Th1/cytotoxic phenotype. Responses to Vim28-49cit and Eno241-260cit originated in the memory pool, while the response to Vim415-433cit was naïve. In the HLA-DP4 and HLA-DR4 transgenic models, Vim28cit generated a memory response. Peptide-specific T cells were capable of Epstein-Barr virus transformed lymphoblastoid cell line recognition suggesting a link with stress due to infection. These results suggest siPTM-peptides are presented under conditions of cellular stress and inflammation and drive cytotoxic CD4 T cell responses that aid in the removal of stressed cells. The presentation of such siPTM-peptides is not restricted to HLA-SE in both humans and animal models.


Assuntos
Artrite Reumatoide , Infecções por Vírus Epstein-Barr , Camundongos , Animais , Humanos , Alelos , Antígeno HLA-DR4/genética , Infecções por Vírus Epstein-Barr/genética , Leucócitos Mononucleares , Herpesvirus Humano 4/genética , Peptídeos , Antígenos de Histocompatibilidade Classe II/genética , Artrite Reumatoide/genética , Antígenos HLA , Camundongos Transgênicos , Imunidade
2.
Front Immunol ; 13: 873947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464453

RESUMO

Homocitrullination is the post translation modification (PTM) of the amino acid lysine to homocitrulline also referred to as carbamylation. This PTM has mainly been studied in relation to autoimmune diseases including rheumatoid arthritis. Homocitrullination of lysines alters their charge which can lead to generation of neoepitopes that are differentially presented by MHC-II and induce modification-specific immune responses. Homocitrullination is often considered a process which triggers autoimmune disease by bypassing self-tolerance however, we suggest that homocitrullination may also have an alternative role in immune responses including protection against cancer. Here we demonstrate that immune responses to homocitrullinated peptides from three different proteins can be induced via multiple HLA-types. Immunization of Balb/c or HLA-transgenic DR4 and DR1 mice can induce modification-specific CD4 mediated IFNγ responses. Healthy human donors show a clear repertoire for the homocitrullinated Vimentin peptide (Vim116-135Hcit), with modification-specific and oligoclonal responses. Importantly, in vivo homocitrulline specific Vim116-135Hcit,Cyk8 371-388Hcit and Aldo 140-157Hcit responses are able to confer an anti-tumor effect in the murine B16 melanoma model. The Vim116-135Hcit anti-tumor response was dependent upon tumor expression of MHC-II suggesting the direct recognition of PTMs on tumor is an important anti-tumor mechanism. Cancer patients also have a CD4 repertoire for Vim116-135Hcit. Together these results suggest that homocitrulline-specific immune responses can be generated in healthy mice and detected in human donors through a variety of HLA-restrictions. Immunization can induce responses to Vim116-135Hcit,Aldolase 140-157Hcit and Cyk8 371-388Hcit which provide anti-tumor therapy across several HLA-types. Our results advance our understanding of homocitrulline-specific immune responses, with implications for a number of fields beyond autoimmunity, including tumor immune surveillance.


Assuntos
Artrite Reumatoide , Melanoma Experimental , Vacinas , Animais , Humanos , Lisina , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos
3.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321274

RESUMO

BACKGROUND: Homocitrullination is the post-translational modification of lysine that is recognized by T cells. METHODS: This study identified homocitrullinated peptides from aldolase, enolase, cytokeratin and binding immunoglobulin protein and used human leukocyte antigen (HLA) transgenic mice to assess immunogenicity by enzyme-linked immunosorbent spot assay. Vaccine efficacy was assessed in tumor therapy studies using HLA-matched B16 melanoma expressing constitutive or interferon γ (IFNγ)-inducible major histocompatibility complex class II (MHC-II) as represented by most human tumors. To determine the mechanism behind the therapy, immune cell infiltrates were analyzed using flow cytometry and therapy studies in the presence of myeloperoxidase (MPO) inhibitor and T-cell depletion performed. We assessed the T-cell repertoire to homocitrullinated peptides in patients with cancer and healthy donors using flow cytometry. RESULTS: Homocitrulline (Hcit) peptide vaccination stimulated strong CD4 T-cell responses and induced significant antitumor therapy in an established tumor model. The antitumor response was dependent on CD4 T cells and the effect was driven mainly via direct tumor recognition, as responses were only observed if the tumors were induced to express MHC-II. In vitro proliferation assays show that healthy donors and patients with cancer have an oligoclonal CD4 T-cell repertoire recognizing homocitrullinated peptides. Inhibition of cyanate generation, which mediates homocitrullination, by MPO inhibition reduced tumor therapy by the vaccine induced T cells (p=0.0018). Analysis of the tumor microenvironment (TME) suggested that myeloid-derived suppressor cells (MDSCs) were a potential source of MPO. The selected B16 melanoma model showed MDSC infiltration and was appropriate to see if the Hcit vaccine could overcome the immunosuppression associated with MDSCs. The vaccine was very effective (90% survival) as the induced CD4 T cells directly targeted the homocitrullinated tumor and likely reversed the immunosuppressive environment. CONCLUSION: We propose that MPO, potentially produced by MDSCs, catalyzes the buildup of cyanate in the TME which diffuses into tumor cells causing homocitrullination of cytoplasmic proteins which are degraded and, in the presence of IFNγ, presented by MHC-II for direct CD4 T-cell recognition. Homocitrullinated proteins are a new target for cancer vaccines and may be particularly effective against tumors containing high levels of MPO expressing MDSCs.


Assuntos
Citrulina/análogos & derivados , Imunoterapia/métodos , Lisina/metabolismo , Células Supressoras Mieloides/imunologia , Animais , Linhagem Celular Tumoral , Citrulina/farmacologia , Citrulina/uso terapêutico , Humanos , Camundongos , Microambiente Tumoral
4.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32561639

RESUMO

BACKGROUND: Stress-induced post-translational modifications occur during autophagy and can result in generation of new epitopes and immune recognition. One such modification is the conversion of arginine to citrulline by peptidylarginine deiminase enzymes. METHODS: We used Human leukocyte antigen (HLA) transgenic mouse models to assess the immunogenicity of citrullinated peptide vaccine by cytokine Enzyme linked immunosorbant spot (ELISpot) assay. Vaccine efficacy was assessed in tumor therapy studies using HLA-matched B16 melanoma and ID8 ovarian models expressing either constitutive or interferon-gamma (IFNγ) inducible Major Histocompatibility Complex (MHC) class II (MHC-II) as represented by most human tumors. To determine the importance of CD4 T cells in tumor therapy, we analyzed the immune cell infiltrate into murine tumors using flow cytometry and performed therapy studies in the presence of CD4 and CD8 T cell depletion. We assessed the T cell repertoire to citrullinated peptides in ovarian cancer patients and healthy donors using flow cytometry. RESULTS: The combination of citrullinated vimentin and enolase peptides (Modi-1) stimulated strong CD4 T cell responses in mice. Responses resulted in a potent anti-tumor therapy against established tumors and generated immunological memory which protected against tumor rechallenge. Depletion of CD4, but not CD8 T cells, abrogated the primary anti-tumor response as well as the memory response to tumor rechallenge. This was further reinforced by successful tumor regression being associated with an increase in tumor-infiltrating CD4 T cells and a reduction in tumor-associated myeloid suppressor cells. The anti-tumor response also relied on direct CD4 T cell recognition as only tumors expressing MHC-II were rejected. A comparison of different Toll-like receptor (TLR)-stimulating adjuvants showed that Modi-1 induced strong Th1 responses when combined with granulocyte-macrophage colony-stimulating factor (GMCSF), TLR9/TLR4, TLR9, TLR3, TLR1/2 and TLR7 agonists. Direct linkage of the TLR1/2 agonist to the peptides allowed the vaccine dose to be reduced by 10-fold to 100-fold without loss of anti-tumor activity. Furthermore, a CD4 Th1 response to the citrullinated peptides was seen in ovarian cancer patients. CONCLUSIONS: Modi-1 citrullinated peptide vaccine induces potent CD4-mediated anti-tumor responses in mouse models and a CD4 T cell repertoire is present in ovarian cancer patients to the citrullinated peptides suggesting that Modi-1 could be an effective vaccine for ovarian cancer patients.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/terapia , Fosfopiruvato Hidratase/imunologia , Vimentina/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Citrulinação/imunologia , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunogenicidade da Vacina , Interferon gama/imunologia , Depleção Linfocítica , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Transgênicos , Fosfopiruvato Hidratase/genética , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vimentina/genética
5.
Ther Adv Vaccines Immunother ; 6(2): 31-47, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29998219

RESUMO

The interplay between tumours and the immune system has long been known to involve complex interactions between tumour cells, immune cells and the tumour microenvironment. The progress of checkpoint inhibitors in the clinic in the last decade has highlighted again the role of the immune system in the fight against cancer. Numerous efforts have been undertaken to develop ways of stimulating the cellular immune response to eradicate tumours. These interventions include the identification of appropriate tumour antigens as targets for therapy. In this review, we summarize progress in selection of target tumour antigen. Targeting self antigens has the problem of thymic deletion of high-affinity T-cell responses leaving a diminished repertoire of low-affinity T cells that fail to kill tumour cells. Thymic regulation appears to be less stringent for differentiation of cancer-testis antigens, as many tumour rejection antigens fall into this category. More recently, targeting neo-epitopes or post-translational modifications such as a phosphorylation or stress-induced citrullination has shown great promise in preclinical studies. Of particular interest is that the responses can be mediated by both CD4 and CD8 T cells. Previous vaccines have targeted CD8 T-cell responses but more recently, the central role of CD4 T cells in orchestrating inflammation within tumours and also differentiating into potent killer cells has been recognized. The design of vaccines to induce such immune responses is discussed herein. Liposomally encoded ribonucleic acid (RNA), targeted deoxyribonucleic acid (DNA) or long peptides linked to toll-like receptor (TLR) adjuvants are the most promising new vaccine approaches. These exciting new approaches suggest that the 'Holy Grail' of a simple nontoxic cancer vaccine may be on the horizon. A major hurdle in tumour therapy is also to overcome the suppressive tumour environment. We address current progress in combination therapies and suggest that these are likely to show the most promise for the future.

6.
Cancer Immunol Res ; 5(4): 292-299, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28254786

RESUMO

Impaired DNA repair drives mutagenicity, which increases neoantigen load and immunogenicity. We investigated the expression of proteins involved in the DNA damage response (ATM, Chk2), double-strand break repair (BRCA1, BLM, WRN, RECQL4, RECQL5, TOPO2A, DNA-PKcs, Ku70/Ku80), nucleotide excision repair (ERCC1), base excision repair (XRCC1, pol ß, FEN1, PARP1), and immune responses (CD8, PD-1, PD-L1, FOXP3) in 1,269 breast cancers and validated our findings in an independent estrogen receptor-negative (ER-) cohort (n = 279). Patients with tumors that expressed low XRCC1, low ATM, and low BRCA1 were not only associated with high numbers of CD8+ tumor-infiltrating lymphocytes, but were also linked to higher grades, high proliferation indexes, presence of dedifferentiated cells, ER- cells, and poor survival (all P ≤ 0.01). PD-1+ or PD-L1+ breast cancers with low XRCC1 were also linked to an aggressive phenotype that was high grade, had high proliferation indexes, contained dedifferentiated cells and ER- (all with P values ≤ 0.01), and poor survival (P = 0.00021 and P = 0.00022, for PD-1+ and PD-L1+ cancers, respectively) including in an independent ER- validation cohort (P = 0.007 and P = 0.047, respectively). We conclude that the interplay between DNA repair, CD8, PD-L1, and PD-1 can promote aggressive tumor phenotypes. XRCC1-directed personalization of immune checkpoint inhibitor therapy may be feasible and warrants further investigation in breast cancer. Cancer Immunol Res; 5(4); 292-9. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T/imunologia , Antígeno B7-H1/metabolismo , Proteína BRCA1/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Feminino , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Receptor ErbB-2/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Análise Serial de Tecidos , Carga Tumoral , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA