Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Hum Vaccin Immunother ; 17(2): 560-565, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614657

RESUMO

Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacteria Bacillus anthracis. There is a need for safe, highly effective, long-term storage vaccine formulations for mass vaccination. However, the development of new subunit vaccines based on recombinant protective antigen (rPA) faces the problem of vaccine antigen instability. Here, the potential of simultaneous application of two different approaches to stabilize rPA was demonstrated. Firstly, we employed spherical particles (SPs) obtained from the tobacco mosaic virus (TMV). Previously, we had reported that SPs can serve as an adjuvant and platform for antigen presentation. In the current work, SPs were shown to increase the stability of the full-size rPA without loss of its antigenic properties. The second direction was site-specific mutagenesis of asparagine residues to avoid deamidation that causes partial protein degradation. The modified recombinant protein comprising the PA immunogenic domains 3 and 4 (rPA3 + 4) was stable during storage at 4 and 25°C. rPA3 + 4 interacts with antibodies to rPA83 both individually and as a part of a complex with SPs. The results obtained can underpin the development of a recombinant vaccine with a full-size modified rPA (with similar amino acid substitutions that stabilize the protein) and SPs.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Toxinas Bacterianas , Antraz/prevenção & controle , Vacinas contra Antraz/genética , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Humanos , Proteínas Recombinantes/genética
2.
Sci Rep ; 10(1): 10365, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587281

RESUMO

Plant viruses are biologically safe for mammals and can be successfully used as a carrier/platform to present foreign epitopes in the course of creating novel putative vaccines. However, there is mounting evidence that plant viruses, their virus-like and structurally modified particles may also have an immunopotentiating effect on antigens not bound with their surface covalently. Here, we present data on the adjuvant properties of plant viruses with various shapes (Tobacco mosaic virus, TMV; Potato virus X, PVX; Cauliflower mosaic virus, CaMV; Bean mild mosaic virus, BMMV) and structurally modified TMV spherical particles (SPs). We have analysed the effectiveness of immune response to individual model antigens (ovalbumin, OVA/hen egg lysozyme, HEL) and to OVA/HEL in compositions with plant viruses/SPs, and have shown that CaMV, TMV and SPs can effectively induce total IgG titers to model antigen. Some intriguing data were obtained when analysing the immune response to the plant viruses/SPs themselves. Strong immunity was induced to CaMV, BMMV and PVX, whereas TMV and SPs stimulated considerably lower self-IgG titers. Our results provide new insights into the immunopotentiating properties of plant viruses and can be useful in devising adjuvants based on plant viruses.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Epitopos/imunologia , Imunização/métodos , Muramidase/imunologia , Ovalbumina/imunologia , Vírus de Plantas/classificação , Vírus de Plantas/imunologia , Animais , Camundongos , Muramidase/administração & dosagem , Ovalbumina/administração & dosagem
3.
Expert Rev Vaccines ; 18(8): 813-828, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31298973

RESUMO

Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.


Assuntos
Vacinas contra Antraz/administração & dosagem , Antraz/prevenção & controle , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antraz/imunologia , Vacinas contra Antraz/efeitos adversos , Vacinas contra Antraz/imunologia , Bacillus anthracis/imunologia , Bacillus anthracis/isolamento & purificação , Humanos , Vacinas de Subunidades Antigênicas/imunologia
4.
PLoS One ; 14(5): e0216905, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150411

RESUMO

Previously, we have reported that spherical particles (SPs) are formed by the thermal remodeling of rigid helical virions of native tobacco mosaic virus (TMV) at 94°C. SPs have remarkable features: stability, unique adsorption properties and immunostimulation potential. Here we performed a comparative study of the amino acid composition of the SPs and virions surface to characterize their properties and take an important step to understanding the structure of SPs. The results of tritium planigraphy showed that thermal transformation of TMV leads to a significant increase in tritium label incorporation into the following sites of SPs protein: 41-71 а.a. and 93-122 a.a. At the same time, there was a decrease in tritium label incorporation into the N- and C- terminal region (1-15 a.a., 142-158 a.a). The use of complementary physico-chemical methods allowed us to carry out a detailed structural analysis of the surface and to determine the most likely surface areas of SPs. The obtained data make it possible to consider viral protein thermal rearrangements, and to open new opportunities for biologically active complex design using information about SPs surface amino acid composition and methods of non-specific adsorption and bioconjugation.


Assuntos
Temperatura Alta , Vírus do Mosaico do Tabaco/química , Proteínas Virais/química , Vírion/química , Domínios Proteicos , Nicotiana/virologia
5.
Mol Biotechnol ; 59(11-12): 469-481, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28921459

RESUMO

Large quantities of potato leafroll virus (PLRV) antigen are difficult to obtain because this virus accumulates in plants at a low titer. To overcome this problem, we constructed a binary vector containing chimeric cDNA, in which the coat protein (CP) gene of the crucifer infecting tobacco mosaic virus (crTMV) was substituted for the coat protein gene of PLRV. The PLRV movement protein (MP) gene, which overlaps completely with the CP gene, was doubly mutated to eliminate priming of the PLRV MP translation from ATG codons with no changes to the amino acid sequence of the CP. The untranslated long intergenic region located upstream of the CP gene was removed from the construct. Transcribed powerful tobamovirus polymerase of the produced vector synthesized PLRV CP gene that was, in turn, translated into the protein. CP PLRV packed RNAs from the helical crTMV in spherical virions. Morphology, size and antigenic specificities of the wild-type and chimeric virus were similar. The yield of isolated chimera was about three orders higher than the yield of native PLRV. The genetic manipulations facilitated the generation of antibodies against the chimeric virus, which recognize the wild-type PLRV.


Assuntos
Antígenos Virais/imunologia , Luteoviridae/imunologia , Nicotiana/imunologia , Plantas Geneticamente Modificadas/imunologia , Solanum tuberosum/imunologia , Vírus do Mosaico do Tabaco/imunologia , Proteínas Virais/imunologia , Antígenos Virais/genética , Genoma Viral , Luteoviridae/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Biossíntese de Proteínas , RNA Viral , Solanum tuberosum/genética , Solanum tuberosum/virologia , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética , Vírion/genética , Vírion/imunologia
6.
PLoS One ; 12(8): e0183824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837650

RESUMO

Plant viruses and their virus-like particles (VLPs) have a lot of advantages for biotechnological applications including complete safety for humans. Alternanthera mosaic virus (AltMV) is a potentially promising object for design of novel materials. The 3D structures of AltMV virions and its VLPs were obtained by single particle EM at ~13Å resolution. The comparison of the reconstructions and a trypsin treatment revealed that AltMV CPs possesses a different fold in the presence (virions) and absence of viral RNA (VLPs). For the first time, the structure of morphologically similar virions and virus-like particles based on the coat protein of a helical filamentous plant virus is shown to be different. Despite this, both AltMV virions and VLPs are stable in a wide range of conditions. To provide a large amount of AltMV for biotechnology usage the isolation procedure was modified.


Assuntos
Proteínas do Capsídeo/química , Vírus do Mosaico/química , Vírion/química , Microscopia Eletrônica/métodos
7.
Antiviral Res ; 144: 27-33, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28511994

RESUMO

A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella.


Assuntos
Portadores de Fármacos , Vacina contra Rubéola/imunologia , Vírus da Rubéola/genética , Vírus da Rubéola/imunologia , Vírus do Mosaico do Tabaco/genética , Animais , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Vacina contra Rubéola/administração & dosagem , Vacina contra Rubéola/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
J Biomater Sci Polym Ed ; 25(16): 1743-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121344

RESUMO

Two hydrophobic cations based on poly-N-ethyl-vinylpyridine were used to produce biologically active complexes. The complexes obtained from tobacco mosaic virus (TMV) spherical particles (SPs), hydrophobic polycation, and a model protein were stable and did not aggregate in solution, particularly at high ionic strengths. The nucleic acid-free SPs were generated by thermal remodeling of the TMV (helical rod-shaped plant virus). The model protein preserved its antigenic activity in the ternary complex (SP-polycation-protein). Immobilization of proteins on the surface of SPs coated with hydrophobic cation is a promising approach to designing biologically active complexes used in bionanotechnologies.


Assuntos
Proteínas Imobilizadas/química , Poliaminas/química , Vírion/química , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Microscopia de Fluorescência , Estrutura Molecular , Nanopartículas/química , Lectinas de Plantas , Polieletrólitos , Polivinil/química , Potexvirus , Estabilidade Proteica , Compostos de Piridínio/química , Soroalbumina Bovina/química , Soluções , Análise Espectral , Vírus do Mosaico do Tabaco
9.
Viruses ; 6(4): 1789-800, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24755563

RESUMO

Recombinant viruses based on the cDNA copy of the tobacco mosaic virus (TMV) genome carrying different versions of the conserved M2e epitope from influenza virus A cloned into the coat protein (CP) gene were obtained and partially characterized by our group previously; cysteines in the human consensus M2e sequence were changed to serine residues. This work intends to show some biological properties of these viruses following plant infections. Agroinfiltration experiments on Nicotiana benthamiana confirmed the efficient systemic expression of M2e peptides, and two point amino acid substitutions in recombinant CPs significantly influenced the symptoms and development of viral infections. Joint expression of RNA interference suppressor protein p19 from tomato bushy stunt virus (TBSV) did not affect the accumulation of CP-M2e-ser recombinant protein in non-inoculated leaves. RT-PCR analysis of RNA isolated from either infected leaves or purified TMV-M2e particles proved the genetic stability of TMV­based viral vectors. Immunoelectron microscopy of crude plant extracts demonstrated that foreign epitopes are located on the surface of chimeric virions. The rod­shaped geometry of plant-produced M2e epitopes is different from the icosahedral or helical filamentous arrangement of M2e antigens on the carrier virus-like particles (VLP) described earlier. Thereby, we created a simple and efficient system that employs agrobacteria and plant viral vectors in order to produce a candidate broad-spectrum flu vaccine.


Assuntos
Epitopos/biossíntese , Vírus da Influenza A/genética , Nanotubos , Nicotiana/genética , Plantas Geneticamente Modificadas , Tobamovirus/genética , Proteínas da Matriz Viral/biossíntese , Proteínas do Capsídeo/genética , Epitopos/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Instabilidade Genômica , Vacinas contra Influenza/isolamento & purificação , Microscopia Imunoeletrônica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tombusvirus , Vacinas Sintéticas/isolamento & purificação , Proteínas da Matriz Viral/genética
10.
J Biomol Struct Dyn ; 32(5): 701-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404770

RESUMO

Conversion of the rod-like tobacco mosaic virus (TMV) virions into "ball-like particles" by thermal denaturation at 90-98 °C had been described by R.G. Hart in 1956. We have reported recently that spherical particles (SPs) generated by thermal denaturation of TMV at 94-98 °C were highly stable, RNA-free, and water-insoluble. The SPs were uniform in shape but varied widely in size (53-800 nm), which depended on the virus concentration. Here, we describe some structural characteristics of SPs using circular dichroism, fluorescence spectroscopy, and Raman spectroscopy. It was found that the structure of SPs protein differs strongly from that of the native TMV and is characterized by coat protein subunits transition from mainly (about 50%) α-helical structure to a structure with low content of α-helices and a significant fraction of ß-sheets. The SPs demonstrate strong reaction with thioflavin T suggesting the formation of amyloid-like structures.


Assuntos
Proteínas do Capsídeo/química , Subunidades Proteicas/química , Vírus do Mosaico do Tabaco/química , Dicroísmo Circular , Temperatura Alta , Nanopartículas , Desnaturação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Análise Espectral Raman , Nicotiana/virologia , Vírion/química
11.
Biochimie ; 95(12): 2415-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24036171

RESUMO

The potato virus X (PVX) virion can be reconstituted in vitro from the virus coat protein (CP) and RNA; heterologous RNAs may be used as well. In our recent study, structure and properties of cognate and heterologous viral ribonucleoproteins (vRNPs) were demonstrated to be similar to those of native virions. The assembly was found to be initiated at the 5' terminus of an RNA and was not dependent on RNA sequence. The aim of the present study was to search for a signal or an essential structural element that directs packaging of viral genetic material into vRNPs. vRNPs were formed by incubation of the PVX CP with heterologous capped RNAs, their functional fragments lacking the cap structure, as well as the capped and uncapped transcripts corresponding to the 5'-terminal region of the genomic PVX RNA. Experimental data show that the presence of the cap structure at the 5' end of a nucleic acid is an important condition for vRNP assembly from RNA and CP. Presumably, the 5'-cap affects conformational state of the RNA region responsible for the efficient interaction with CP and creates conformational encapsidation signal for vRNP assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Potexvirus/genética , Capuzes de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Bromovirus/genética , RNA/metabolismo , RNA Viral/metabolismo , Ribonucleoproteínas/genética , Vírion/metabolismo , Montagem de Vírus/genética
12.
Curr Pharm Des ; 19(31): 5587-600, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23394564

RESUMO

A new approach for super-expression of the influenza virus epitope M2e in plants has been developed on the basis of a recombinant Tobacco mosaic virus (TMV, strain U1) genome designed for Agrobacterium-mediated delivery into the plant cell nucleus. The TMV coat protein (CP) served as a carrier and three versions of the M2e sequence were inserted into the surface loop between amino acid residues 155 and 156. Cysteine residues in the heterologous peptide were thought likely to impede efficient assembly of chimeric particles. Therefore, viral vectors TMV-M2e-ala and TMV-M2e-ser were constructed in which cysteine codons 17 and 19 of the M2e epitope were substituted by codons for serine or alanine. Agroinfiltration experiments proved that the chimeric viruses were capable of systemically infecting Nicotiana benthamiana plants. Antisera raised against TMV-M2e-ala virions appear to contain far more antibodies specific to influenza virus M2e than those specific to TMV carrier particle (ratio 5:1). Immunogold electron microscopy showed that the 2-epitopes were uniformly distributed and tightly packed on the surface of the chimeric TMV virions. Apparently, the majority of the TMV CP-specific epitopes in the chimeric TMV-M2e particles are hidden from the immune system by the M2e epitopes exposed on the particle surface. The profile of IgG subclasses after immunization of mice with TMV-M2e-ser and TMV-M2e-ala was evaluated. Immunization with TMV-M2e-ala induced a significant difference between the levels of IgG1 and IgG2a (IgG1/IgG2a=3.2). Mice immunized with the chimeric viruses were resistant to five lethal doses (LD50) of the homologous influenza virus strain, A/PR/8/34 (H1N1) and TMV-M2e-ala also gave partial protection (5LD50, 70% of survival rate) against a heterologous strain influenza A/California/04/2009 (H1N1) (4 amino acid changes in M2e). These results indicate that a new generation candidate universal nanovaccine against influenza based on a recombinant TMV construct has been obtained.


Assuntos
Vetores Genéticos , Vacinas contra Influenza/imunologia , Vírus do Mosaico do Tabaco/genética , Proteínas da Matriz Viral/imunologia , Animais , Cães , Epitopos , Feminino , Humanos , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Dose Letal Mediana , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica/métodos , Nanopartículas , Infecções por Orthomyxoviridae/prevenção & controle , Taxa de Sobrevida , Nicotiana/virologia , Proteínas da Matriz Viral/genética
13.
Appl Microbiol Biotechnol ; 93(1): 179-89, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21870047

RESUMO

A test system is described and expanded upon for mass field immunochromatography assay on porous membrane carriers for rapid diagnostics of potato virus X (PVX) in potato leaf tissue and sprout extracts using colloidal gold nanoparticles as a marker. Sensitivity of the assay developed for PVX identification is found to be comparable to the sensitivity of solid-phase sandwich-ELISA. Complete assay time does not exceed 15 min, and the lower limit of the PVX detection in non-clarified leaf extract is 2 ng/ml. A single measurement requires 0.1-0.2 ml (3-5 drops) of tested solution only (extracted from 10-20 mg of potato leaf tissue or sprouts). The simplicity and reliability of the method makes it especially efficient in direct rapid monitoring of many infected potato specimens in the field, as verified by field trials of 360 clones of 28 domestic and foreign cultivars of potato. A diagnostic kit for routine analyses of potato viral infections both in the laboratory and in the field is described and expanded upon.


Assuntos
Doenças das Plantas/virologia , Potexvirus/isolamento & purificação , Solanum tuberosum/virologia , Virologia/métodos , Cromatografia de Afinidade/métodos , Potexvirus/imunologia , Sensibilidade e Especificidade , Fatores de Tempo
14.
Virus Genes ; 42(2): 268-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21127957

RESUMO

A southeastern European isolate of Alternanthera mosaic virus (AltMV-MU) of the genus Potexvirus (family Flexiviridae) was purified from the ornamental plant Portulaca grandiflora. The complete nucleotide sequence (6606 nucleotides) of AltMV-MU genomic RNA was defined. The AltMV-MU genome is different from those of all isolates described earlier and is most closely related to genomes of partly sequenced portulaca isolates AltMV-Po (America) and AltMV-It (Italy). Phylogenetic analysis supports the view that AltMV-MU belongs to a new "portulaca" genotype distinguishable from the "phlox" genotype.


Assuntos
Genoma Viral , Folhas de Planta/virologia , Portulaca/virologia , Potexvirus/classificação , Sequência de Aminoácidos , Sequência de Bases , Proteínas do Capsídeo/genética , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potexvirus/genética , Potexvirus/isolamento & purificação , RNA Viral , RNA Polimerase Dependente de RNA/genética
15.
Open Virol J ; 5: 136-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216073

RESUMO

A new isolate of Alternantheramosaic virus (AltMV-MU) was purified from Portulaca grandiflora plants. It has been shown that the AltMV-MU coat protein (CP) can be efficiently reassembled in vitro under different conditions into helical RNA-free virus-like particles (VLPs) antigenically related to native virus. The AltMV-MU and VLPs were examined by atomic force and transmission electron microscopies. The encapsidated AltMV-MU RNA is nontranslatable in vitro. However, it can be translationally activated by CP phosphorylation or by binding to the TGB1protein from the virus-coded movement triple gene block.

16.
J Gen Virol ; 91(Pt 6): 1621-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20164264

RESUMO

Monoclonal antibodies (mAbs) to recombinant movement protein (MP(REC)) of Tobacco mosaic virus (TMV) were used to reveal the dependence of MP epitope accessibility to mAbs on subcellular MP localization and post-translational MP phosphorylation. Leaves of Nicotiana benthamiana or N. tabacum were inoculated mechanically with TMV or agroinjected with an MP expression vector. At different time post-inoculation, ER membrane- and cell wall-enriched fractions (ER-MP and CW-MP, respectively) were isolated and analysed. The N-terminal region (residues 1-30) as well as regions 186-222 and 223-257 of MP from the CW and ER fractions were accessible for interaction with mAbs. By contrast, the MP regions including residues 76-89 and 98-129 were not accessible. The C-terminal TMV MP region (residues 258-268) was inaccessible to mAbs not only in CW-MP, but also in ER-MP fractions. Evidence is presented that phosphorylation of the majority of TMV MP C-terminal sites occurred on ER membranes at an early stage of virus infection, i.e. not after, but before reaching the cell wall. C-terminal phosphorylation of purified MP(REC) abolished recognition of C-proximal residues 258-268 by specific mAbs, which could be restored by MP dephosphorylation. Likewise, accessibility to mAbs of the C-terminal MP epitope in ER-MP and CW-MP leaf fractions was restored by dephosphorylation. Substitution of three or four C-terminal Ser/Thr residues with non-phosphorylatable Ala also resulted in abolition of interaction of mAbs with MP.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Movimento Viral em Plantas/imunologia , Vírus do Mosaico do Tabaco/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Parede Celular/química , Retículo Endoplasmático/química , Fosforilação , Folhas de Planta/virologia , Ligação Proteica , Nicotiana/virologia
17.
Tuberculosis (Edinb) ; 87(3): 218-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17182283

RESUMO

Recent developments in genetic engineering allow the employment of plants as factories for 1/foreign protein production. Thus, tuberculosis (TB) ESAT6 antigen was expressed in different plant systems, but the level of vaccine protein accumulation was extremely low. We describe the technology for superexpression of TB vaccine proteins (Ag85B, ESAT6, and ESAT6:Ag85B fusion) in plant leaves which involves: (i) construction of tobacco mosaic virus-based vectors with the coat protein genes substituted by those for TB antigens; (ii) Agrobacterium-mediated delivery to plant leaf tissues of binary vectors containing the cDNA copy of the vector virus genome; and (iii) replication of virus vectors in plant cells under conditions suppressing the virus-induced gene silencing. This technology enables efficient production of the TB vaccine proteins in plants; in particular, the level of Ag85B antigen accumulation was not less than 800 mg/kg of fresh leaves. Expression of TB antigens in plant cells as His(6)-tagged proteins promoted their isolation and purification by Ni-NTA affinity chromatography. Deletion of transmembrane domains from Ag85B caused a dramatic increase in its intracellular stability. We propose that the strategy of TB antigens superproduction in a plant might be used as a basis for the creation of prophylactic and therapeutic vaccine against TB.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Mycobacterium tuberculosis/imunologia , Folhas de Planta/imunologia , Plantas Geneticamente Modificadas/imunologia , Agrobacterium tumefaciens , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Western Blotting , Cromatografia de Afinidade , Escherichia coli/imunologia , Vetores Genéticos , Plasmídeos , Nicotiana , Vírus do Mosaico do Tabaco/imunologia , Vacinas contra a Tuberculose/biossíntese
18.
FEBS Lett ; 580(16): 3872-8, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16797009

RESUMO

Co-agroinjection of Nicotiana benthamiana leaves with the pectin methylesterase (proPME) gene and the TMV:GFP vector resulted in a stimulation of virus-induced RNA silencing (inhibition of GFP production, virus RNA degradation, stimulation of siRNAs production). Conversely, co-expression of TMV:GFP with either antisense PME construct or with enzymatically inactive proPME restored synthesis of viral RNA. Furthermore, expression of proPME enhanced the GFP transgene-induced gene silencing accompanied by relocation of the DCL1 protein from nucleus to the cytoplasm and activation of siRNAs and miRNAs production. It was hypothesized that DCL1 relocated to the cytoplasm may use as substrates both miRNA precursor and viral RNA. The capacity for enhancing the RNA silencing is a novel function for the polyfunctional PME.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Nicotiana/enzimologia , Interferência de RNA , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Precursores Enzimáticos , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/biossíntese , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Transporte Proteico , Estabilidade de RNA/genética , RNA Interferente Pequeno/biossíntese , RNA Viral/metabolismo , Rhizobium/genética , Vírus do Mosaico do Tabaco/fisiologia , Transgenes
19.
FEBS Lett ; 580(13): 3329-34, 2006 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-16709413

RESUMO

We report that unprocessed tobacco pectin methylesterase (PME) contains N-terminal pro-sequence including the transmembrane (TM) domain and spacer segment preceding the mature PME. The mature portion of PME was replaced by green fluorescent protein (GFP) gene and various deletion mutants of pro-sequence fused to GFP were cloned into binary vectors and agroinjected in Nicotiana benthamiana leaves. The PME pro-sequence delivered GFP to the cell wall (CW). We showed that a transient binding of PME TM domain to endoplasmic reticulum membranes occurs upon its transport to CW. The CW targeting was abolished by various deletions in the TM domain, i.e., anchor domain was essential for secretion of GFP to CW. By contrast, even entire deletion of the spacer segment had no influence on GFP targeting.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/genética , Genes de Plantas , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Mutação , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas/genética , Deleção de Sequência
20.
J Mol Biol ; 333(3): 565-72, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14556745

RESUMO

Previously we have shown that encapsidated potato virus X (PVX) RNA was nontranslatable in vitro, but could be converted into a translatable form by binding of the PVX-coded movement protein (termed TGBp1) to one end of a polar helical PVX virion. We reported that binding of TGBp1 to coat protein (CP) subunits located at one extremity of the helical particles induced a linear destabilization of the CP helix, which was transmitted along the whole particle. Two model structures were used: (i) native PVX and (ii) artificial polar helical PVX-like particles lacking intact RNA (PVX(RNA-DEG)). Binding of TGBp1 to the end of either of these particles led to their destabilization, but no disassembly of the CP helix occurred. Influence of additional factors was required to trigger rapid disassembly of TGBp1-PVX and TGBp1-PVX(RNA-DEG) complexes. Thus: (i) no disassembly was observed unless TGBp1-PVX complex was translated. A novel phenomenon of TGBp1-dependent, ribosome-triggered disassembly of PVX was described: initiation of translation and few translocation steps were needed to trigger rapid (and presumably cooperative) disassembly of TGBp1-PVX into protein subunits and RNA. Importantly, the whole of the RNA molecule (including its 3'-terminal region) was released. The TGBp1-induced linear destabilization of CP helix was reversible, suggesting that PVX in TGBp1-PVX complex was metastable; (ii) entire disassembly of the TGBp1-PVX(RNA-DEG) complex (but not of the TGBp1-free PVX(RNA-DEG) particles) into 2.8S subunits was triggered under influence of a centrifugal field. To our knowledge, transmission of the linear destabilization along the polar helical protein array induced by a foreign protein binding to the end of the helix represents a novel phenomenon. It is tempting to suggest that binding of TGBp1 to the end of the PVX CP helix induced conformational changes in terminal CP subunits that can be linearly transferred along the whole helical particle, i.e. that intersubunit conformational changes may be transferred along the CP helix.


Assuntos
Potexvirus/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Proteínas do Capsídeo/metabolismo , Microscopia Eletrônica , Proteínas do Movimento Viral em Plantas , Potexvirus/química , Potexvirus/genética , Potexvirus/ultraestrutura , Ligação Proteica , Biossíntese de Proteínas , Estrutura Secundária de Proteína , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA