Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 238(3): 952-970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694296

RESUMO

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.


Assuntos
Incêndios , Incêndios Florestais , Plantas , Fenômenos Fisiológicos Vegetais , Água , Carbono , Ecossistema
2.
Nat Commun ; 11(1): 873, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054857

RESUMO

A warmer climate increases evaporative demand. However, response to warming depends on water availability. Existing earth system models represent soil moisture but simplify groundwater connections, a primary control on soil moisture. Here we apply an integrated surface-groundwater hydrologic model to evaluate the sensitivity of shallow groundwater to warming across the majority of the US. We show that as warming shifts the balance between water supply and demand, shallow groundwater storage can buffer plant water stress; but only where shallow groundwater connections are present, and not indefinitely. As warming persists, storage can be depleted and connections lost. Similarly, in the arid western US warming does not result in significant groundwater changes because this area is already largely water limited. The direct response of shallow groundwater storage to warming demonstrates the strong and early effect that low to moderate warming may have on groundwater storage and evapotranspiration.

3.
J Contam Hydrol ; 165: 53-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113426

RESUMO

The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all three geochemical conditions. Correlation between reactive surface area and hydraulic conductivity, either positive or negative, results in variation in τeq and Leq.


Assuntos
Dióxido de Carbono/química , Água Subterrânea/química , Chumbo/química , Movimentos da Água , Poluentes Químicos da Água/química , Monitoramento Ambiental , Cinética , Modelos Teóricos , Solubilidade , Sulfetos/química
4.
Environ Sci Technol ; 47(11): 5954-62, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23618095

RESUMO

Increased human health risk associated with groundwater contamination from potential carbon dioxide (CO2) leakage into a potable aquifer is predicted by conducting a joint uncertainty and variability (JUV) risk assessment. The approach presented here explicitly incorporates heterogeneous flow and geochemical reactive transport in an efficient manner and is used to evaluate how differences in representation of subsurface physical heterogeneity and geochemical reactions change the calculated risk for the same hypothetical aquifer scenario where a CO2 leak induces increased lead (Pb(2+)) concentrations through dissolution of galena (PbS). A nested Monte Carlo approach was used to take Pb(2+) concentrations at a well from an ensemble of numerical reactive transport simulations (uncertainty) and sample within a population of potentially exposed individuals (variability) to calculate risk as a function of both uncertainty and variability. Pb(2+) concentrations at the well were determined with numerical reactive transport simulation ensembles using a streamline technique in a heterogeneous 3D aquifer. Three ensembles with variances of log hydraulic conductivity (σ(2)lnK) of 1, 3.61, and 16 were simulated. Under the conditions simulated, calculated risk is shown to be a function of the strength of subsurface heterogeneity, σ(2)lnK and the choice between calculating Pb(2+) concentrations in groundwater using equilibrium with galena and kinetic mineral reaction rates. Calculated risk increased with an increase in σ(2)lnK of 1 to 3.61, but decreased when σ(2)lnK was increased from 3.61 to 16 for all but the highest percentiles of uncertainty. Using a Pb(2+) concentration in equilibrium with galena under CO2 leakage conditions (PCO2 = 30 bar) resulted in lower estimated risk than the simulations where Pb(2+) concentrations were calculated using kinetic mass transfer reaction rates for galena dissolution and precipitation. This study highlights the importance of understanding both hydrologic and geochemical conditions when numerical simulations are used to perform quantitative risk calculations.


Assuntos
Dióxido de Carbono , Água Subterrânea , Medição de Risco/métodos , Poluição da Água , Simulação por Computador , Humanos , Chumbo/análise , Método de Monte Carlo , Saúde Pública , Processos Estocásticos , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA