Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445144

RESUMO

Occlusal rest provides support for removable partial dentures (RPD). Rest seats are ideally prepared in enamel, but the abutment teeth might be restored or need restorations. This study compared the fracture strength of abutments restored with composite to amalgam restorations after rest seat preparation. Disto-occlusal cavities were prepared in 30 extracted human maxillary premolars. The specimens were allocated in three groups (n = 10) based on the type of restoration. All the specimens were exposed to thermomechanical aging followed by cycling loading. Fracture strength was tested using a universal testing machine, and then, the fracture mode was recorded. The data were analyzed using Kruskal-Wallis test with a significance level set at 0.05. The fracture mode was recorded as catastrophic or non-catastrophic. The fracture strength between all tested groups showed no significant difference. The highest and lowest fracture strength were recorded on amalgam and Tetric N-Ceram groups, respectively. Composite Tetric N-Ceram showed equal distribution of fracture sites on the restorative materials and teeth, it also displayed the highest number of non-catastrophic fractures unlike other groups where the fracture occurred more within the restorations. The fracture strength of composite was comparable to that of amalgam restorations with prepared rest seats.

2.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376260

RESUMO

This study aimed to evaluate the incorporation of zirconia/silver phosphate nanoparticles to develop experimental dental adhesives and to measure their physical and mechanical properties. The nanoparticles were synthesized by the sonication method, and the phase purity, morphological pattern, and antibacterial properties with Staphylococcus aureus and Pseudomonas aeruginosa were assessed. The silanized nanoparticles were incorporated (0, 0.15, 0.25, and 0.5 wt.%) into the photoactivated dimethacrylate resins. The degree of conversion (DC) was assessed, followed by the micro-hardness and flexural strength/modulus test. Long-term color stability was investigated. The bond strength with the dentin surface was conducted on days 1 and 30. The transmission electron microscopy and X-ray diffractogram confirmed the nano-structure and phase purity of the particles. The nanoparticles showed antibacterial activities against both strains and inhibited biofilm formation. The DC range of the experimental groups was 55-66%. The micro-hardness and flexural strength increased with the concentration of nanoparticles in the resin. The 0.5 wt.% group showed significantly high micro-hardness values, whereas a non-significant difference was observed between the experimental groups for flexural strength. The bond strength was higher on day 1 than on day 30, and a significant difference was observed between the two periods. At day 30, the 0.5 wt.% showed significantly higher values compared to other groups. Long-term color stability was observed for all the samples. The experimental adhesives showed promising results and potential to be used for clinical applications. However, further investigations such as antibacterial, penetration depth, and cytocompatibility are required.

3.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36904416

RESUMO

Denture care and maintenance are necessary for both denture longevity and underlying tissue health. However, the effects of disinfectants on the strength of 3D-printed denture base resins are unclear. Herein, distilled water (DW), effervescent tablet, and sodium hypochlorite (NaOCl) immersion solutions were used to investigate the flexural properties and hardness of two 3D-printed resins (NextDent and FormLabs) compared with a heat-polymerized resin. The flexural strength and elastic modulus were investigated using the three-point bending test and Vickers hardness test before (baseline) immersion and 180 days after immersion. The data were analyzed using ANOVA and Tukey's post hoc test (α = 0.05), and further verified by using electron microscopy and infrared spectroscopy. The flexural strength of all the materials decreased after solution immersion (p < 0.001). The effervescent tablet and NaOCl immersion reduced the flexural strength (p < 0.001), with the lowest values recorded with the NaOCl immersion. The elastic modulus did not significantly differ between the baseline and after the DW immersion (p > 0.05), but significantly decreased after the effervescent tablet and NaOCl immersion (p < 0.001). The hardness significantly decreased after immersion in all the solutions (p < 0.001). The immersion of the heat-polymerized and 3D-printed resins in the DW and disinfectant solutions decreased the flexural properties and hardness.

4.
Materials (Basel) ; 15(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079302

RESUMO

In this paper, a new approach to excite sharp asymmetric resonances using a single completely symmetric split-ring resonator (SRR) inside a rectangular waveguide is proposed. The method is based on an asymmetry in the excitation of a symmetric split-ring resonator by placing it away from the center of the waveguide along its horizontal axis. In turn, a prominent asymmetric resonance was observed in the transmission amplitude of both the simulated results and the measured data. Using a single symmetric SRR with an asymmetric distance of 6 mm from the center of a rectangular waveguide led to the excitation of a sharp resonance with a Q-factor of 314 at 6.9 GHz. More importantly, a parametric study simulating different overlayer analytes with various refractive indices revealed a wavelength sensitivity of 579,710 nm/RIU for 150 µm analyte thickness.

5.
Materials (Basel) ; 15(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629533

RESUMO

This study aimed to fabricate nano-hydroxyapatite (nHA) grafted/non-grafted E-glass-fiber-based (nHA/EG) and E-glass fiber (EG) orthodontic retainers and to compare their properties with commercially available retainers. Stainless-steel (SS) retainers and everStick Ortho (EST) were used as control groups. The retainers were evaluated with Raman spectroscopy and bonded to bovine teeth. The samples were fatigued under cyclic loading (120,000 cycles) followed by static load testing. The failure behavior was evaluated under an optical microscope and scanning electron microscope. The strain growth on the orthodontic retainers was assessed (48h and 168h) by an adhesion test using Staphylococcus aureus and Candida albicans. The characteristic peaks of resin and glass fibers were observed, and the debonding force results showed a significant difference among all of the groups. SS retainers showed the highest bonding force, whereas nHA/EG retainers showed a non-significant difference from EG and EST retainers. SS retainers' failure mode occurred mainly at the retainer-composite interface, while breakage occurred in glass-fiber-based retainers. The strains' adhesion to EST and EG was reduced with time. However, it was increased with nHA/EG. Fabrication of nHA/EG retainers was successfully achieved and showed better debonding force compared to other glass-fiber-based groups, whereas non-linear behavior was observed for the strains' adhesion.

6.
PLoS One ; 17(3): e0265898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320324

RESUMO

In this study, we aimed at exploring the feasibility of functional near-infrared spectroscopy (fNIRS) for studying the observation and/or motor imagination of various postural tasks. Thirteen healthy adult subjects followed five trials of static and dynamic standing balance tasks, throughout three different experimental setups of action observation (AO), a combination of action observation and motor imagery (AO+MI), and motor imagery (MI). During static and dynamic standing tasks, both the AO+MI and MI experiments revealed that many channels in prefrontal or motor regions are significantly activated while the AO experiment showed almost no significant increase in activations in most of the channels. The contrast between static and dynamic standing tasks showed that with more demanding balance tasks, relative higher activation patterns were observed, particularly during AO and in AO+MI experiments in the frontopolar area. Moreover, the AO+MI experiment revealed a significant difference in premotor and supplementary motor cortices that are related to balance control. Furthermore, it has been observed that the AO+MI experiment induced relatively higher activation patterns in comparison to AO or MI alone. Remarkably, the results of this work match its counterpart from previous functional magnetic resonance imaging studies. Therefore, they may pave the way for using the fNIRS as a diagnostic tool for evaluating the performance of the non-physical balance training during the rehabilitation period of temporally immobilized patients.


Assuntos
Imagens, Psicoterapia , Córtex Motor , Adulto , Estudos de Viabilidade , Humanos , Imaginação/fisiologia , Córtex Motor/fisiologia , Equilíbrio Postural/fisiologia
7.
J Prosthodont ; 31(9): 799-805, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35102627

RESUMO

PURPOSE: To investigate the influence of reducing material thickness on flexural properties of computer-aided design and computer-aided manufacturing (CAD-CAM) denture base resins. MATERIALS AND METHODS: Four CAD-CAM denture base acrylic resin materials were selected; two were made via the subtractive method (AvaDent and IvoCad) and two were made with the additive method (FormLabs and NextDent). One heat-polymerized denture base material was used as a control. Specimens were fabricated with varying thicknesses (n = 10/group): 3.3 mm, 2.5 mm, 2 mm, or 1.5 mm. Flexural strength was evaluated via a three-point bending test. One- and two-way ANOVA were used for data analysis along with Tukey's post hoc comparison (α = 0.05). RESULTS: Reducing the thickness of materials made via the subtractive method did not influence flexural strength up to 2 mm (p > 0.05). However, the difference was significant at a 1.5 mm thickness (p ˂ 0.001). For materials made via the additive method, NextDent specimens had no significant decrease in flexural strength when the thickness was reduced to 2 mm (p = 0.58). FormLabs specimens showed a significant decrease (p ˂ 0.001), although the values of flexural strength were clinically acceptable. During testing, specimens manufactured via the additive method at a 1.5 mm thickness bent without fracturing and were therefore excluded. All materials showed a reduction in elastic modulus as the thickness decreased (p ˂ 0.001). CONCLUSION: Heat-polymerized, AvaDent, and IvoCad materials may be used for denture base fabrication at a minimum thickness of 1.5 mm. FormLabs and NextDent may be fabricated at a 2 mm minimum thickness, with clinically acceptable flexural properties.


Assuntos
Materiais Dentários , Polimetil Metacrilato , Teste de Materiais , Bases de Dentadura , Desenho Assistido por Computador , Propriedades de Superfície
8.
J Prosthodont ; 31(3): 257-265, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34318547

RESUMO

PURPOSE: This study aimed to evaluate the repair strength of a newly introduced repair technique involving zero-gap repair width. MATERIALS AND METHODS: A total of 36 rectangular prism specimens with dimensions of 64 × 10 × 3.3 mm were prepared from heat-polymerized acrylic resin. Nine specimens were kept intact. The other specimens were sectioned into halves and modified to create repair gaps of 2.5-mm beveled (2.5B) as control, 0-mm beveled (ZB), and 0-mm inverse bi-beveled (ZIBB). The ZIBB group was prepared with a V-shaped internal groove on both halves (repair tunnel), while the intaglio and cameo surfaces were kept intact except for two small holes at the cameo surface for repair resin injection. The 2.5B and ZB groups were repaired conventionally while the ZIBB group was repaired by injecting repair resin into the tunnel through one of the holes until excess material oozed from the other hole. Repaired specimens were thermally cycled at 5 and 55°C for 10,000 cycles with 1 min dwell time. A 3-point bending test was conducted using a universal testing machine for flexural strength and elastic modulus measurement. Kruskal-Wallis/Mann-Whitney tests and ANOVA/post hoc Tukey tests were applied for data analysis (α = 0.05). RESULTS: The flexural strength of repaired specimens was substantially lower than that of intact specimens, and significant differences were present between repaired groups (p ˂ 0.05). ZB and ZIBB had higher flexural strength (p ˂ 0.001) and elastic modulus (p ˂ 0.05) than 2.5B. Among the ZB and ZIBB groups, ZB showed the highest flexural strength, and ZIBB had the highest elastic modulus. CONCLUSION: The closed repair technique improved the flexural strength and elastic modulus of repaired acrylic denture base.


Assuntos
Bases de Dentadura , Reparação em Dentadura , Reparação em Dentadura/métodos , Teste de Materiais , Maleabilidade , Polimetil Metacrilato , Propriedades de Superfície
9.
Eur J Dent ; 16(1): 188-194, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34428839

RESUMO

OBJECTIVE: The aim of this study was to evaluate the effects of the addition of low-silicon dioxide nanoparticles (nano-SiO2) on the flexural strength and elastic modulus of polymethyl methacrylate (PMMA) denture base material. MATERIALS AND METHODS: A total of 50 rectangular acrylic specimens (65 × 10 × 2.5 mm3) were fabricated from heat-polymerized acrylic resin. In accordance with the amount of nano-SiO2, specimens were divided into the following five groups (n = 10 per group): a control group with no added SiO2, and four test groups modified with 0.05, 0.25, 0.5, and 1.0 wt% nano-SiO2 of acrylic powder. Flexural strength and elastic modulus were measured by using a 3-point bending test with a universal testing machine. A scanning electron microscope was used for fracture surface analyses. Data analyses were conducted through analysis of variance and Tukey's post hoc test (α = 0.05). RESULTS: Compared with the control group, flexural strength and modulus of elasticity tended to significantly increase (p ˂ 0.001) with the incorporation of nano-SiO2. In between the reinforced groups, the flexural strength significantly decreased (p ˂ 0.001) as the concentrations increased from 0.25 to 1.0%, with the 1.0% group showing the lowest value. Furthermore, the elastic modulus significantly increased (p ˂ 0.001) at 0.05% followed by 1.0%, 0.25%, 0.5%, and least in control group. CONCLUSION: A low nano-SiO2 addition increased the flexural strength and elastic modulus of a PMMA denture base resin.

10.
J Prosthodont ; 31(5): 412-418, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34347351

RESUMO

PURPOSE: This in vitro study evaluated the flexural strength, impact strength, hardness, and surface roughness of 3D-printed denture base resin subjected to thermal cycling treatment. MATERIALS AND METHODS: According to ISO 20795-1:2013 standards, 120 acrylic resin specimens (40/flexural strength test, 40/impact strength, and 40/surface roughness and hardness test, n = 10) were fabricated and distributed into two groups: heat-polymerized; (Major.Base.20) as control and 3D-printed (NextDent) as experimental group. Half of the specimens of each group were subjected to 10,000 thermal cycles of 5 to 55°C simulating 1 year of clinical use. Flexural strength (MPa), impact strength (KJ/m2 ), hardness (VHN), and surface roughness (µm) were measured using universal testing machine, Charpy's impact tester, Vickers hardness tester, and profilometer, respectively. Data were analyzed by ANOVA and Tukey honestly significant difference (HSD) test (α = 0.05). RESULTS: The values of flexural strength (MPa) were 86.63 ± 1.0 and 69.15 ± 0.88; impact strength (KJ/m2 )-6.32 ± 0.50 and 2.44 ± 0.31; hardness (VHN)-41.63 ± 2.03 and 34.62 ± 2.1; and surface roughness (µm)-0.18 ± 0.01 and 0.12 ± 0.02 for heat-polymerized and 3D-printed denture base materials, respectively. Significant differences in all tested properties were recorded between heat-polymerized and 3D-printed denture base materials (P < 0.001). Thermal cycling significantly lowered the flexural strength (63.93 ± 1.54 MPa), impact strength (2.40 ± 0.35 KJ/m2 ), and hardness (30.17 ± 1.38 VHN) of 3D-printed resin in comparison to thermal cycled heat-polymerized resin, but surface roughness showed non-significant difference (p = 0.262). CONCLUSION: 3D-printed resin had inferior flexural strength, impact strength, and hardness values than heat-polymerized resin, but showed superior surface roughness. Temperature changes (thermal cycling) significantly reduced the hardness and flexural strength and increased surface roughness, but did not affect the impact strength.


Assuntos
Bases de Dentadura , Polímeros , Teste de Materiais , Polimetil Metacrilato , Impressão Tridimensional , Propriedades de Superfície
11.
J Adv Prosthodont ; 13(4): 226-236, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34504674

RESUMO

PURPOSE: This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS: Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS: Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION: Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

12.
Sensors (Basel) ; 21(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922285

RESUMO

In this article, a biosensor composed of a single metamaterial asymmetric resonator is specifically designed for sensing the glucose level of 1 µL of solution. The resonator has two gaps, and one of them ends with a semicircle shape on which the glucose solution is placed. This design helps in confining the drops of glucose solutions in a specific area where the field is maximally confined in order to enhance the electromagnetic wave-matter interaction. Six samples of glucose solutions with concentrations that cover hypoglycemia, normal and hyperglycemia conditions that vary from around 41 to 312 mg/dL were prepared and examined by this biosensor. The resonance frequency redshift was used as a measure of the changes in the glucose level of the solutions. Without glucose solution, an excellent agreement between the measured and simulated transmission amplitude was observed. The increase in glucose concentrations exhibited clear and noticeable redshifts in the resonance frequency. This biosensor revealed a 0.9997 coefficient of determination, which implies an excellent prediction fitting model. More importantly, a sensitivity of 438 kHz/(mg/dL) was observed over the range of concentrations of the aqueous solution.


Assuntos
Técnicas Biossensoriais , Glucose , Água
13.
Polymers (Basel) ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113873

RESUMO

In the last two decades, the application of microwave heating to the processing of materials has to become increasingly widespread. Microwave-assisted foaming processes show promise for industrial commercialization due to the potential advantages that microwaves have shown compared to conventional methods. These include reducing process time, improved energy efficiency, solvent-free foaming, reduced processing steps, and improved product quality. However, the interaction of microwave energy with foaming materials, the effects of critical processing factors on microwave foaming behavior, and the foamed product's final properties are still not well-explored. This article reviews the mechanism and principles of microwave foaming of different materials. The article critically evaluates the impact of influential foaming parameters such as blowing agent, viscosity, precursor properties, microwave conditions, additives, and filler on the interaction of microwave, foaming material, physical (expansion, cellular structure, and density), mechanical, and thermal properties of the resultant foamed product. Finally, the key challenges and opportunities for developing industrial microwave foaming processes are identified, and areas for potential future research works are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA