RESUMO
Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.
Assuntos
Gelatina , Microgéis , Gelatina/farmacologia , Gelatina/química , Materiais Biocompatíveis , Metacrilatos/químicaRESUMO
Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98% viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, indicating that mineralization effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.
RESUMO
Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts.
Assuntos
Bioimpressão , Microgéis , Camundongos , Humanos , Animais , Engenharia Tecidual/métodos , Bioimpressão/métodos , Materiais Biocompatíveis , Hidrogéis , Alicerces Teciduais , Impressão TridimensionalRESUMO
Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.
Assuntos
Microgéis , Humanos , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Osso e Ossos , Materiais Biocompatíveis/química , Diferenciação Celular/fisiologia , Engenharia Tecidual , Alicerces Teciduais/químicaRESUMO
Pericytes stabilize blood vessels and promote vascular barrier function. However, vessels subjected to pro-inflammatory conditions have impaired barrier function, which has been suggested to potentially expose perivascular cells to SARS-CoV-2. To test this hypothesis, we engineered pericyte-supported vascular capillaries on-a-chip, and determined that the extravasation and binding of spike protein (S1) on perivascular cells of inflamed vessels to be significantly higher that in healthy controls, indicating a potential target to understand COVID-19 vascular complications.
RESUMO
mRNA therapeutics have increased in popularity, largely due to the transient and fast nature of protein expression and the low risk of off-target effects. This has increased drastically with the remarkable success of mRNA-based vaccines for COVID-19. Despite advances in lipid nanoparticle (LNP)-based delivery, the mechanisms that regulate efficient endocytic trafficking and translation of mRNA remain poorly understood. Although it is widely acknowledged that the extracellular matrix (ECM) regulates uptake and expression of exogenous nano-complexed genetic material, its specific effects on mRNA delivery and expression have not yet been examined. Here, we demonstrate a critical role for matrix stiffness in modulating both mRNA transfection and expression and uncover distinct mechano-regulatory mechanisms for endocytosis of mRNA through RhoA mediated mTOR signaling and cytoskeletal dynamics. Our findings have implications for effective delivery of therapeutic mRNA to targeted tissues that may be differentially affected by tissue and matrix stiffness.
Assuntos
COVID-19 , Nanopartículas , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Hidrogéis , Lipídeos/genética , Lipossomos , RNA Mensageiro/genéticaRESUMO
Conventional biomaterials developed for bone regeneration fail to fully recapitulate the nanoscale structural organization and complex composition of the native bone microenvironment. Therefore, despite promoting osteogenic differentiation of stem cells, they fall short of providing the structural, biochemical, and mechanical stimuli necessary to drive osteogenesis for bone regeneration and function. To address this, we have recently developed a novel strategy to engineer bone-like tissue using a biomimetic approach to achieve rapid and controlled nanoscale mineralization of a cell-laden matrix in the presence of osteopontin, a non-collagenous protein, and a supersaturated solution of calcium and phosphate medium. Here, we build on this approach to engineer bone regeneration scaffolds comprising methacrylated gelatin (GelMA) hydrogels incorporated with calcium citrate core-shell microparticles as a sustained and reliable source of calcium ions for in situ mineralization. We demonstrate successful biomineralization of GelMA hydrogels by embedded calcium carbonate-calcium citrate core-shell microparticles with the resultant mineral chemistry, structure, and organization reminiscent of that of native bone. The biomimetic mineralization was further shown to promote osteogenic differentiation of encapsulated human mesenchymal stem cells even in the absence of other exogenous osteogenic induction factors. Ultimately, by combining the superior biological response engendered by biomimetic mineralization with the intrinsic tissue engineering advantages offered by GelMA, such as biocompatibility, biodegradability, and printability, we envision that our system offers great potential for bone regeneration efforts.
Assuntos
Gelatina/química , Hidrogéis/química , Células-Tronco Mesenquimais/fisiologia , Metacrilatos/química , Carbonato de Cálcio , Citrato de Cálcio , Diferenciação Celular , Sobrevivência Celular , Humanos , Osteogênese , Tamanho da PartículaRESUMO
A functional vascular supply is a key component of any large-scale tissue, providing support for the metabolic needs of tissue-remodeling cells. Although well-studied strategies exist to fabricate biomimetic scaffolds for bone regeneration, success rates for regeneration in larger defects can be improved by engineering microvascular capillaries within the scaffolds to enhance oxygen and nutrient supply to the core of the engineered tissue as it grows. Even though the role of calcium and phosphate has been well understood to enhance osteogenesis, it remains unclear whether calcium and phosphate may have a detrimental effect on the vasculogenic and angiogenic potential of endothelial cells cultured on 3D printed bone scaffolds. In this study, we presented a novel dual-ink bioprinting method to create vasculature interwoven inside CaP bone constructs. In this method, strands of a CaP ink and a sacrificial template material was used to form scaffolds containing CaP fibers and microchannels seeded with vascular endothelial and mesenchymal stem cells (MSCs) within a photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel material. Our results show similar morphology of growing vessels in the presence of CaP bioink, and no significant difference in endothelial cell sprouting was found. Furthermore, our initial results showed the differentiation of hMSCs into pericytes in the presence of CaP ink. These results indicate the feasibility of creating vascularized bone scaffolds, which can be used for enhancing vascular formation in the core of bone scaffolds.
Assuntos
Tinta , Alicerces Teciduais , Células Endoteliais , Neovascularização Fisiológica , Impressão Tridimensional , Engenharia TecidualRESUMO
Adequate vascularization of scaffolds is a prerequisite for successful repair and regeneration of lost and damaged tissues. It has been suggested that the maturity of engineered vascular capillaries, which is largely determined by the presence of functional perivascular mural cells (or pericytes), plays a vital role in maintaining vessel integrity during tissue repair and regeneration. Here, we investigated the role of pericyte-supported-engineered capillaries in regenerating bone in a critical-size rat calvarial defect model. Prior to implantation, human umbilical vein endothelial cells and human bone marrow stromal cells (hBMSCs) were cocultured in a collagen hydrogel to induce endothelial cell morphogenesis into microcapillaries and hBMSC differentiation into pericytes. Upon implantation into the calvarial bone defects (8 mm), the prevascularized hydrogels showed better bone formation than either untreated controls or defects treated with autologous bone grafts (positive control). Bone formation parameters such as bone volume, coverage area, and vascularity were significantly better in the prevascularized hydrogel group than in the autologous bone group. Our results demonstrate that tissue constructs engineered with pericyte-supported vascular capillaries may approximate the regenerative capacity of autologous bone, despite the absence of osteoinductive or vasculogenic growth factors.
Assuntos
Células Imobilizadas , Hidrogéis , Células-Tronco Mesenquimais , Crânio , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Xenoenxertos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Nus , Crânio/irrigação sanguínea , Crânio/lesões , Crânio/metabolismo , Crânio/patologiaRESUMO
It has long been proposed that recapitulating the extracellular matrix (ECM) of native human tissues in the laboratory may enhance the regenerative capacity of engineered scaffoldsin-vivo. Organ- and tissue-derived decellularized ECM biomaterials have been widely used for tissue repair, especially due to their intrinsic biochemical cues that can facilitate repair and regeneration. The main purpose of this study was to synthesize a new photocrosslinkable human bone-derived ECM hydrogel for bioprinting of vascularized scaffolds. To that end, we demineralized and decellularized human bone fragments to obtain a bone matrix, which was further processed and functionalized with methacrylate groups to form a photocrosslinkable methacrylate bone ECM hydrogel- bone-derived biomaterial (BoneMA). The mechanical properties of BoneMA were tunable, with the elastic modulus increasing as a function of photocrosslinking time, while still retaining the nanoscale features of the polymer networks. The intrinsic cell-compatibility of the bone matrix ensured the synthesis of a highly cytocompatible hydrogel. The bioprinted BoneMA scaffolds supported vascularization of endothelial cells and within a day led to the formation of interconnected vascular networks. We propose that such a quick vascular network formation was due to the host of pro-angiogenic biomolecules present in the bone ECM matrix. Further, we also demonstrate the bioprintability of BoneMA in microdimensions as injectable ECM-based building blocks for microscale tissue engineering in a minimally invasive manner. We conclude that BoneMA may be a useful hydrogel system for tissue engineering and regenerative medicine.
Assuntos
Bioimpressão , Bioimpressão/métodos , Células Endoteliais , Matriz Extracelular/química , Humanos , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
Engineered tissue constructs require the fabrication of highly perfusable and mature vascular networks for effective repair and regeneration. In tissue engineering, stem cells are widely employed to create mature vascularized tissues in vitro. Pericytes are key to the maturity of these vascular networks, and therefore the ability of stem cells to differentiate into pericyte-like lineages should be understood. To date, there is limited information regarding the ability of stem cells from the different tissue sources to differentiate into pericytes and form microvascular capillaries in vitro. Therefore, here we tested the ability of the stem cells derived from bone marrow (BMSC), dental pulp (DPSC) and dental apical papilla (SCAP) to engineer pericyte-supported vascular capillaries when encapsulated along with human umbilical vein endothelial cells (HUVECs) in gelatin methacrylate (GelMA) hydrogel. Our results show that the pericyte differentiation capacity of BMSC was greater with high expression of α-SMA and NG2 positive cells. DPSC had α-SMA positive cells but showed very few NG2 positive cells. Further, SCAP cells were positive for α-SMA while they completely lacked NG2 positive cells. We found the pericyte differentiation ability of these stem cells to be different, and this significantly affected the vasculogenic ability and quality of the vessel networks. In summary, we conclude that, among stem cells from different craniofacial regions, BMSCs appear more suitable for engineering of mature vascularized networks than DPSCs or SCAPs.
Assuntos
Capilares , Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Hidrogéis , Pericitos/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Proliferação de Células/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologiaRESUMO
Biomaterial scaffolds have served as the foundation of tissue engineering and regenerative medicine. However, scaffold systems are often difficult to scale in size or shape in order to fit defect-specific dimensions, and thus provide only limited spatiotemporal control of therapeutic delivery and host tissue responses. Here, a lithography-based 3D printing strategy is used to fabricate a novel miniaturized modular microcage scaffold system, which can be assembled and scaled manually with ease. Scalability is based on an intuitive concept of stacking modules, like conventional toy interlocking plastic blocks, allowing for literally thousands of potential geometric configurations, and without the need for specialized equipment. Moreover, the modular hollow-microcage design allows each unit to be loaded with biologic cargo of different compositions, thus enabling controllable and easy patterning of therapeutics within the material in 3D. In summary, the concept of miniaturized microcage designs with such straight-forward assembly and scalability, as well as controllable loading properties, is a flexible platform that can be extended to a wide range of materials for improved biological performance.
Assuntos
Microgéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/químicaRESUMO
INTRODUCTION: An understanding of the extracellular matrix characteristics which stimulate and guide stem cell differentiation in the dental pulp is fundamental for the development of enhanced dental regenerative therapies. Our objectives, in this study, were to determine whether stem cells from the apical papilla (SCAP) responded to substrate stiffness, whether hydrogels providing micropatterned topographical cues stimulate SCAP self-alignment, and whether the resulting alignment could influence their differentiation towards an odontogenic lineage in-vitro. METHODS: Experiments utilized gelatin methacryloyl (GelMA) hydrogels of increasing concentrations (5, 10 and 15%). We determined their compressive modulus via unconfined compression and analyzed cell spreading via F-actin/DAPI immunostaining. GelMA hydrogels were micropatterned using photolithography, in order to generate microgrooves and ridges of 60 and 120µm, onto which SCAP were seeded and analyzed for self-alignment via fluorescence microscopy. Lastly, we analyzed the odontogenic differentiation of SCAP using alkaline phosphatase protein expression (ANOVA/Tukey α=0.05). RESULTS: SCAP appeared to proliferate better on stiffer hydrogels. Both 60 and 120µm micropatterned hydrogels guided the self-alignment of SCAP with no significant difference between them. Similarly, both 60 and 120µm micropattern aligned cells promoted higher odontogenic differentiation than non-patterned controls. SIGNIFICANCE: In summary, both substrate mechanics and geometry have a statistically significant influence on SCAP response, and may assist in the odontogenic differentiation of dental stem cells. These results may point toward the fabrication of cell-guiding scaffolds for regenerative endodontics, and may provide cues regarding the development of the pulp-dentin interface during tooth formation.
Assuntos
Hidrogéis , Odontogênese , Diferenciação Celular , Proliferação de Células , Papila Dentária , Polpa Dentária , Células-TroncoRESUMO
Bone tissue, by definition, is an organic-inorganic nanocomposite, where metabolically active cells are embedded within a matrix that is heavily calcified on the nanoscale. Currently, there are no strategies that replicate these definitive characteristics of bone tissue. Here we describe a biomimetic approach where a supersaturated calcium and phosphate medium is used in combination with a non-collagenous protein analog to direct the deposition of nanoscale apatite, both in the intra- and extrafibrillar spaces of collagen embedded with osteoprogenitor, vascular, and neural cells. This process enables engineering of bone models replicating the key hallmarks of the bone cellular and extracellular microenvironment, including its protein-guided biomineralization, nanostructure, vasculature, innervation, inherent osteoinductive properties (without exogenous supplements), and cell-homing effects on bone-targeting diseases, such as prostate cancer. Ultimately, this approach enables fabrication of bone-like tissue models with high levels of biomimicry that may have broad implications for disease modeling, drug discovery, and regenerative engineering.
Assuntos
Materiais Biomiméticos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Calcificação Fisiológica , Técnicas de Cultura de Células , Diferenciação Celular , Colágeno/química , Meios de Cultura/química , Durapatita/química , Humanos , Células-Tronco Mesenquimais , Nanocompostos/química , Osteogênese , Fatores de TempoRESUMO
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Assuntos
Diferenciação Celular , Sistemas de Liberação de Medicamentos/métodos , RNA Mensageiro , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/uso terapêuticoRESUMO
Biomimetically mineralized collagen scaffolds are promising for bone regeneration, but vascularization of these materials remains to be addressed. Here, we engineered mineralized scaffolds using an osteopontin-guided polymer-induced liquid-precursor mineralization method to recapitulate bone's mineralized nanostructure. SEM images of mineralized samples confirmed the presence of collagen with intrafibrillar mineral, also EDS spectra and FTIR showed high peaks of calcium and phosphate, with a similar mineral/matrix ratio to native bone. Mineralization increased collagen compressive modulus up to 15-fold. To evaluate vasculature formation and pericyte-like differentiation, HUVECs and hMSCs were seeded in a 4:1 ratio in the scaffolds for 7 days. Moreover, we used RT-PCR to investigate the gene expression of pericyte markers ACTA2, desmin, CD13, NG2, and PDGFRß. Confocal images showed that both nonmineralized and mineralized scaffolds enabled endothelial capillary network formation. However, vessels in the nonmineralized samples had longer vessel length, a larger number of junctions, and a higher presence of αSMA+ mural cells. RT-PCR analysis confirmed the downregulation of pericytic markers in mineralized samples. In conclusion, although both scaffolds enabled endothelial capillary network formation, mineralized scaffolds presented less pericyte-supported vessels. These observations suggest that specific scaffold characteristics may be required for efficient scaffold vascularization in future bone tissue engineering strategies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1522-1532, 2019.
Assuntos
Calcificação Fisiológica , Diferenciação Celular , Colágeno/química , Neovascularização Fisiológica , Osteopontina/química , Pericitos/metabolismo , Alicerces Teciduais/química , Antígenos de Diferenciação/biossíntese , Células Endoteliais da Veia Umbilical Humana , Humanos , Pericitos/citologiaRESUMO
Recent studies in tissue engineering have adopted extracellular matrix (ECM) derived scaffolds as natural and cytocompatible microenvironments for tissue regeneration. The dentin matrix, specifically, has been shown to be associated with a host of soluble and insoluble signaling molecules that can promote odontogenesis. Here, we have developed a novel bioink, blending printable alginate (3% w/v) hydrogels with the soluble and insoluble fractions of the dentin matrix. We have optimized the printing parameters and the concentrations of the individual components of the bioink for print accuracy, cell viability and odontogenic potential. We find that, while viscosity, and hence printability of the bioinks, was greater in the formulations containing higher concentrations of alginate, a higher proportion of insoluble dentin matrix proteins significantly improved cell viability; where a 1:1 ratio of alginate and dentin (1:1 Alg-Dent) was most suitable. We further demonstrate high retention of the soluble dentin molecules within the 1:1 Alg-Dent hydrogel blends, evidencing renewed interactions between these molecules and the dentin matrix post crosslinking. Moreover, at concentrations of 100 µg ml-1, these soluble dentin molecules significantly enhanced odontogenic differentiation of stem cells from the apical papilla encapsulated in bioprinted hydrogels. In summary, the proposed novel bioinks have demonstrable cytocompatibility and natural odontogenic capacity, which can be a used to reproducibly fabricate scaffolds with complex three-dimensional microarchitectures for regenerative dentistry in the future.
Assuntos
Bioimpressão/métodos , Dentina/química , Hidrogéis/química , Impressão Tridimensional , Endodontia Regenerativa/métodos , Alicerces Teciduais , Alginatos/química , Animais , Linhagem Celular , Células Cultivadas , Polpa Dentária/citologia , Humanos , Camundongos , Dente Molar/citologia , Engenharia Tecidual/métodosRESUMO
The success of tissue engineering inevitably depends on the fabrication of tissue constructs that can be vascularized and that anastomose with the host vasculature. In this report, we studied the effects of light-emitting diode (LED) photopolymerized gelatin methacryloyl hydrogels (GelMA), encapsulated with stem cells from the apical papilla (SCAP) and human umbilical vein endothelial cells (HUVECs), in promoting vasculature network formation as a function of hydrogel physical and mechanical properties, as well as total cell density. Lithium acylphosphinate (LAP) was used as the photoinitiator in concentrations of 0.05, 0.075, 0.1% (w/v). GelMA hydrogel precursors of 5% (w/v) were encapsulated with cocultures of SCAPs and HUVECs at different cell densities (1×, 5×, and 10 × 106 cells/mL) and photo-cross-linked for 5 s. Results suggested that the compressive modulus of GelMA hydrogels increased as a function of LAP concentration, and had a maximum stiffness of 3.2 kPa. GelMA hydrogels photopolymerized using 0.05 or 0.075% LAP, which had an average of 1.5 and 1.6 kPa of elastic modulus respectively, had the most efficient vasculature formation after 5 days, and these results were further enhanced when the highest cell density (10 × 106 cells/mL) was used. Immunofluorescence images showed that SCAP cells spread in close contact with endothelial networks and expressed alpha smooth muscle actin (αSMA), which is suggestive of their differentiation into pericyte-like cells. αSMA expression was also apparently higher in hydrogels polymerized with 0.05% LAP and 10 × 106 cells/mLl. In conclusion, photopolymerization of GelMA hydrogels using an LED-light source can be an effective method for potential chair-side/in situ procedures for engineering of vascularized tissue constructs in regenerative medicine.
RESUMO
OBJECTIVES: To optimize the 3D printing of a dental material for provisional crown and bridge restorations using a low-cost stereolithography 3D printer; and compare its mechanical properties against conventionally cured provisional dental materials. METHODS: Samples were 3D printed (25×2×2mm) using a commercial printable resin (NextDent C&B Vertex Dental) in a FormLabs1+ stereolithography 3D printer. The printing accuracy of printed bars was determined by comparing the width, length and thickness of samples for different printer settings (printing orientation and resin color) versus the set dimensions of CAD designs. The degree of conversion of the resin was measured with FTIR, and both the elastic modulus and peak stress of 3D printed bars was determined using a 3-point being test for different printing layer thicknesses. The results were compared to those for two conventionally cured provisional materials (Integrity®, Dentsply; and Jet®, Lang Dental Inc.). RESULTS: Samples printed at 90° orientation and in a white resin color setting was chosen as the most optimal combination of printing parameters, due to the comparatively higher printing accuracy (up to 22% error), reproducibility and material usage. There was no direct correlation between printing layer thickness and elastic modulus or peak stress. 3D printed samples had comparable modulus to Jet®, but significantly lower than Integrity®. Peak stress for 3D printed samples was comparable to Integrity®, and significantly higher than Jet®. The degree of conversion of 3D printed samples also appeared higher than that of Integrity® or Jet®. SIGNIFICANCE: Our results suggest that a 3D printable provisional restorative material allows for sufficient mechanical properties for intraoral use, despite the limited 3D printing accuracy of the printing system of choice.
Assuntos
Coroas , Materiais Dentários/química , Planejamento de Prótese Dentária , Prótese Parcial , Impressão Tridimensional , Módulo de Elasticidade , Humanos , Software , Propriedades de SuperfícieRESUMO
Photopolymerized hydrogels, such as gelatin methacryloyl (GelMA), have desirable biological and mechanical characteristics for a range of tissue engineering applications. OBJECTIVE: This study aimed to optimize a new method to photopolymerize GelMA using a dental curing light (DL). METHODS: Lithium acylphosphinate photo-initiator (LAP, 0.05, 0.067, 0.1% w/v) was evaluated for its ability to polymerize GelMA hydrogel precursors (10% w/v) encapsulated with odontoblast-like cells (OD21). Different irradiances (1650, 2300 and 3700mW/cm2) and photo-curing times (5-20s) were tested, and compared against the parameters typically used in UV light photopolymerization (45mW/cm2, 0.1% w/v Irgacure 2959 as photoinitiator). Physical and mechanical properties of the photopolymerized GelMA hydrogels were determined. Cell viability was assessed using a live and dead assay kit. RESULTS: Comparing DL and UV polymerization methods, the DL method photopolymerized GelMA precursor faster and presented larger pore size than the UV polymerization method. The live and dead assay showed more than 80% of cells were viable when hydrogels were photopolymerized with the different DL irradiances. However, the cell viability decreased when the exposure time was increased to 20s using the 1650mW/cm2 intensity, and when the LAP concentration was increased from 0.05 to 0.1%. Both DL and UV photocrosslinked hydrogels supported a high percentage of cell viability and enabled fabrication of micropatterns using a photolithography microfabrication technique. SIGNIFICANCE: The proposed method to photopolymerize GelMA cell-laden hydrogels using a dental curing light is effective and represents an important step towards the establishment of chair-side procedures in regenerative dentistry.