Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 10(1): 683, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959799

RESUMO

Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide. Increasing temperature often turns into inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by increasing temperature has been reported. Influence of high temperature on both R genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions and transcriptomic analysis performed. The pyramided line IRBB67 showed no differences in lesion length between both temperature regimes, demonstrating that non-effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area under both temperature regimes in IRBB67. Time course transcriptomic analysis revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our findings highlight altered cellular compartments and point at a role of the cell wall involved in Xoo resistance and heat stress tolerance in both susceptible (IR24) and the resistant (IRBB67) NILs. Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high temperature which may have enhanced its resistance. The interplay of both heat stress and Xoo responses as determined by up-regulated and down-regulated genes demonstrates how resistant plants cope with combined biotic and abiotic stresses.


Assuntos
Resistência à Doença , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Parede Celular/genética , Mudança Climática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Temperatura Alta , Oryza/genética , Oryza/microbiologia , Xanthomonas/patogenicidade
2.
Mol Plant Microbe Interact ; 33(2): 212-222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31634039

RESUMO

Rice sheath blight, caused by the necrotrophic fungus Rhizoctonia solani Kühn, continues to be an important and challenging rice disease worldwide. Here, we used genome-wide association studies over a high-density rice array to facilitate the identification of potential novel genes and quantitative trait loci related to sheath blight resistance. We identified multiple regions that significantly associated with independent disease components in chromosomes 1, 4, and 11 under controlled condition. In particular, we investigated qLN1128, a quantitative trait locus enriched with defense-related genes that reduce disease lesions in a near-isogenic line. RNA profiling of the line carrying qLN1128 showed a number of differentially expressed genes related to the reactive oxygen species (ROS)-redox pathway. Histochemical staining revealed less ROS accumulation on the resistant line, suggesting efficient ROS deregulation that delays pathogen colonization. The detection of genomic regions controlling multiple mechanisms of resistance to sheath blight will provide tools to design effective breeding interventions in rice.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Oryza , Espécies Reativas de Oxigênio , Rhizoctonia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Oryza/genética , Oryza/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Rhizoctonia/fisiologia
3.
Nat Biotechnol ; 37(11): 1344-1350, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659337

RESUMO

Bacterial blight of rice is an important disease in Asia and Africa. The pathogen, Xanthomonas oryzae pv. oryzae (Xoo), secretes one or more of six known transcription-activator-like effectors (TALes) that bind specific promoter sequences and induce, at minimum, one of the three host sucrose transporter genes SWEET11, SWEET13 and SWEET14, the expression of which is required for disease susceptibility. We used CRISPR-Cas9-mediated genome editing to introduce mutations in all three SWEET gene promoters. Editing was further informed by sequence analyses of TALe genes in 63 Xoo strains, which revealed multiple TALe variants for SWEET13 alleles. Mutations were also created in SWEET14, which is also targeted by two TALes from an African Xoo lineage. A total of five promoter mutations were simultaneously introduced into the rice line Kitaake and the elite mega varieties IR64 and Ciherang-Sub1. Paddy trials showed that genome-edited SWEET promoters endow rice lines with robust, broad-spectrum resistance.


Assuntos
Resistência à Doença , Proteínas de Membrana Transportadoras/genética , Oryza/crescimento & desenvolvimento , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Xanthomonas/genética
4.
Nat Biotechnol ; 37(11): 1372-1379, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659338

RESUMO

Blight-resistant rice lines are the most effective solution for bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo). Key resistance mechanisms involve SWEET genes as susceptibility factors. Bacterial transcription activator-like (TAL) effectors bind to effector-binding elements (EBEs) in SWEET gene promoters and induce SWEET genes. EBE variants that cannot be recognized by TAL effectors abrogate induction, causing resistance. Here we describe a diagnostic kit to enable analysis of bacterial blight in the field and identification of suitable resistant lines. Specifically, we include a SWEET promoter database, RT-PCR primers for detecting SWEET induction, engineered reporter rice lines to visualize SWEET protein accumulation and knock-out rice lines to identify virulence mechanisms in bacterial isolates. We also developed CRISPR-Cas9 genome-edited Kitaake rice to evaluate the efficacy of EBE mutations in resistance, software to predict the optimal resistance gene set for a specific geographic region, and two resistant 'mega' rice lines that will empower farmers to plant lines that are most likely to resist rice blight.


Assuntos
Resistência à Doença , Proteínas de Membrana Transportadoras/genética , Oryza/crescimento & desenvolvimento , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Sítios de Ligação , Sistemas CRISPR-Cas , Bases de Dados Genéticas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Xanthomonas/metabolismo
5.
Front Microbiol ; 5: 26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24550897

RESUMO

Rice tungro disease is a complex disease caused by the interaction between Rice tungro bacilliform virus and Rice tungro spherical virus (RTSV). RTSV alone does not cause recognizable symptoms in most Asian rice (Oryza sativa) plants, whereas some African rice (O. glaberrima) plants were found to become stunted by RTSV. Stunting of rice plants by virus infections usually accompanies the suppression of various cell wall-related genes. The expression of cell wall-related genes was examined in O. glaberrima and O. sativa infected with RTSV to see the relationship between the severity of stunting and the suppression of cell wall-related genes by RTSV. The heights of four accessions of O. glaberrima were found to decline by 14-34% at 28 days post-inoculation (dpi) with RTSV, whereas the height reduction of O. sativa plants by RTSV was not significant. RTSV accumulated more in O. glaberrima plants than in O. sativa plants, but the level of RTSV accumulation was not correlated with the degree of height reduction among the four accessions of O. glaberrima. Examination for expression of genes for cellulose synthase A5 (CESA5) and A6 (CESA6), cellulose synthase-like A9 (CSLA9) and C7, and α-expansin 1 (expansin 1) and 15 precursors in O. glaberrima and O. sativa plants between 7 and 28 dpi with RTSV showed that the genes such as those for CESA5, CESA6, CSLA9, and expansin 1were more significantly suppressed in stunted plants of O. glaberrima at 14 dpi with RTSV than in O. sativa, suggesting that stunting of O. glaberrima might be associated with these cell wall-related genes suppressed by RTSV. Examination for expression of these genes in O. sativa plants infected with other rice viruses in previous studies indicated that the suppression of the expansin 1 gene is likely to be a signature response commonly associated with virus-induced stunting of Oryza species. These results suggest that stunting of O. glaberrima by RTSV infection might be associated with the suppression of these cell wall-related genes at the early stage of infection with RTSV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA