Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 753054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222322

RESUMO

Cucumber mosaic virus (CMV, Bromoviridae: Cucummovirus), one of the most widespread plant viruses with several hosts, causes huge losses in yield quality and quantity. The occurrence of various CMV strains and high genetic diversity within the virus complicate its management. We describe the population structure of CMV in Nigeria using partial RNA1 and RNA3 gene sequences from three natural hosts: pepper (Capsicum annuum), tomato (Solanum lycopersicum), and watermelon (Citrullus lanatus). One hundred and six leaf samples were obtained from 16 locations across Nigeria, and specific primers were used to amplify the two gene fragments using PCR. Twenty-four samples tested positive for CMV using RNA1 primers, and amplicons were sequenced from 12 isolates, revealing 82.94-99.80% nucleotide and 85.42-100% amino acid sequence similarities within the population. The partial RNA3 fragment, corresponding to the complete coat protein (CP) gene, was sequenced from seven isolates, with 95.79-97.90% and 98.62-100% nucleotide and amino acid intrapopulation similarities, respectively. The isolates belonged to subgroup IB and formed distinct phylogenetic clusters in both gene sets, indicating putative novel strains. Recombination signals, supported by phylogenetic inferences, were detected within the RNA1 dataset (P ≤ 0.05) and identified a recombinant isolate within the Nigerian sequences. No recombination was detected within the CP genes. Population genetics parameters established high diversity within the Nigerian population compared to other isolates worldwide, while selection pressure estimates revealed the existence of negative selection in both gene sets. Although CMV subgroup IB strains were postulated to originate from Asia, this study reveals their prevalence across several hosts from different locations in Nigeria. To our knowledge, this is the first comprehensive description of a recombinant CMV subgroup IB isolate from West Africa, which has implications for its robust detection and overall management.

2.
Curr Plant Biol ; 23: 100156, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32884907

RESUMO

This study analyzed the genetic diversity of 18 Yam mild mosaic virus (YMMV, genus Potyvirus) isolates collected from field surveys in Ghana (N = 8) and Nigeria (N = 10) in 2012-13. The full coat protein (CP) encoding region of the virus genome was sequenced and used for comparison and phylogenetic analysis of the YMMV isolates available in the NCBI nucleotide database. The mean nucleotide (nt) diversity was 13.4% among the 18 isolates (17 from D. alata and one from D. rotundata), 11.4% within the isolates of Ghana and 7.4% within the isolates of Nigeria. The phylogenetic clustering of the 18 YMMV isolates did not show correlation with the country of origin, and they aligned with the reference sequences of four of the 11 YMMV monophyletic groups representing the cosmopolitan group and the African group of YMMV isolates. High sequence homology of 99% between the YMMV sequence from Nigeria (CP12-DaN6-1) and a previously reported sequence from Togo (GenBank Accession Number AF548514) suggests a prevalence of seed-borne virus spread within the region. Understanding YMMV sequence diversity in West Africa aid in the improvement of diagnostic assays necessary for virus indexing and seed certification.

3.
Arch Virol ; 163(4): 1057-1061, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29308543

RESUMO

A closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP) assay was developed for the detection of yam mosaic virus (YMV, genus Potyvirus) infecting yam (Dioscorea spp.). The assay uses a set of six oligonucleotide primers targeting the YMV coat protein region, and the amplification products in YMV-positive samples are visualized by chromogenic detection with SYBR Green I dye. The CT-RT-LAMP assay detected YMV in leaf and tuber tissues of infected plants. The assay is 100 times more sensitive in detecting YMV than standard RT-PCR, while maintaining the same specificity.


Assuntos
Proteínas do Capsídeo/análise , Dioscorea/virologia , Técnicas de Amplificação de Ácido Nucleico , Potyvirus/genética , Transcrição Reversa , Benzotiazóis , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Primers do DNA/síntese química , Primers do DNA/metabolismo , Diaminas , Corantes Fluorescentes/química , Expressão Gênica , Compostos Orgânicos/química , Doenças das Plantas/virologia , Folhas de Planta/virologia , Tubérculos/virologia , Potyvirus/metabolismo , Quinolinas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA