Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
ACS Synth Biol ; 13(5): 1467-1476, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38696739

RESUMO

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Assuntos
Luz , Optogenética , Regiões Promotoras Genéticas , Shewanella , Shewanella/genética , Shewanella/metabolismo , Optogenética/métodos , Transporte de Elétrons , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes/genética , Biologia Sintética/métodos
2.
Biochemistry ; 63(5): 599-609, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38357768

RESUMO

Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.


Assuntos
Adenilato Quinase , Peptídeos , Adenilato Quinase/química , Sequência de Aminoácidos , Temperatura
3.
Proteins ; 92(1): 52-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37596815

RESUMO

The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.


Assuntos
Oxirredutases , Oxirredutases/química , Oxirredução , Transporte de Elétrons
4.
ACS Synth Biol ; 12(6): 1574-1578, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37322886

RESUMO

As the impacts of engineering biology grow, it is important to introduce the field early and in an accessible way. However, teaching engineering biology poses challenges, such as limited representation of the field in widely used scientific textbooks or curricula, and the interdisciplinary nature of the subject. We have created an adaptable curriculum module that can be used by anyone to teach the basic principles and applications of engineering biology. The module consists of a versatile, concept-based slide deck designed by experts across engineering biology to cover key topic areas. Starting with the design, build, test, and learn cycle, the slide deck covers the framework, core tools, and applications of the field at an undergraduate level. The module is available for free on a public website and can be used in a stand-alone fashion or incorporated into existing curricular materials. Our aim is that this modular, accessible slide deck will improve the ease of teaching current engineering biology topics and increase public engagement with the field.


Assuntos
Currículo , Biologia Sintética
5.
Microb Biotechnol ; 16(3): 507-533, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519191

RESUMO

Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.


Assuntos
Eletrônica , Biologia Sintética , Eletricidade , Biotecnologia
6.
Nature ; 611(7936): 548-553, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323787

RESUMO

Real-time chemical sensing is crucial for applications in environmental and health monitoring1. Biosensors can detect a variety of molecules through genetic circuits that use these chemicals to trigger the synthesis of a coloured protein, thereby producing an optical signal2-4. However, the process of protein expression limits the speed of this sensing to approximately half an hour, and optical signals are often difficult to detect in situ5-8. Here we combine synthetic biology and materials engineering to develop biosensors that produce electrical readouts and have detection times of minutes. We programmed Escherichia coli to produce an electrical current in response to specific chemicals using a modular, eight-component, synthetic electron transport chain. As designed, this strain produced current following exposure to thiosulfate, an anion that causes microbial blooms, within 2 min. This amperometric sensor was then modified to detect an endocrine disruptor. The incorporation of a protein switch into the synthetic pathway and encapsulation of the bacteria with conductive nanomaterials enabled the detection of the endocrine disruptor in urban waterway samples within 3 min. Our results provide design rules to sense various chemicals with mass-transport-limited detection times and a new platform for miniature, low-power bioelectronic sensors that safeguard ecological and human health.


Assuntos
Técnicas Biossensoriais , Condutividade Elétrica , Poluentes Ambientais , Escherichia coli , Humanos , Técnicas Biossensoriais/métodos , Disruptores Endócrinos/análise , Escherichia coli/química , Escherichia coli/metabolismo , Nanoestruturas/química , Fatores de Tempo , Poluentes Ambientais/análise , Biologia Sintética , Transporte de Elétrons , Tiossulfatos/análise , Poluentes da Água/análise
7.
Biochemistry ; 61(13): 1337-1350, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35687533

RESUMO

The multiheme cytochrome MtrA enables microbial respiration by transferring electrons across the outer membrane to extracellular electron acceptors. While structural studies have identified residues that mediate the binding of MtrA to hemes and to other cytochromes that facilitate extracellular electron transfer (EET), the relative importance of these interactions for EET is not known. To better understand EET, we evaluated how insertion of an octapeptide across all MtrA backbone locations affects Shewanella oneidensis MR-1 respiration on Fe(III). The EET efficiency was found to be inversely correlated with the proximity of the insertion to the heme prosthetic groups. Mutants with decreased EET efficiencies also arose from insertions in a subset of the regions that make residue-residue contacts with the porin MtrB, while all sites contacting the extracellular cytochrome MtrC presented high peptide insertion tolerance. MtrA variants having peptide insertions within the CXXCH motifs that coordinate heme cofactors retained some ability to support respiration on Fe(III), although these variants presented significantly decreased EET efficiencies. Furthermore, the fitness of cells expressing different MtrA variants under Fe(III) respiration conditions correlated with anode reduction. The peptide insertion profile, which represents the first comprehensive sequence-structure-function map for a multiheme cytochrome, implicates MtrA as a strategic protein engineering target for the regulation of EET.


Assuntos
Elétrons , Shewanella , Citocromos/genética , Citocromos/metabolismo , Transporte de Elétrons , Compostos Férricos/metabolismo , Heme/química , Oxirredução , Peptídeos/genética , Peptídeos/metabolismo , Shewanella/genética , Shewanella/metabolismo
8.
ACS Synth Biol ; 11(7): 2327-2338, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731987

RESUMO

Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.


Assuntos
Shewanella , Biofilmes , Condutividade Elétrica , Eletrodos , Transporte de Elétrons , Proteômica , Shewanella/metabolismo
9.
Adv Mater ; 34(13): e2109442, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088918

RESUMO

Microbial bioelectronic devices integrate naturally occurring or synthetically engineered electroactive microbes with microelectronics. These devices have a broad range of potential applications, but engineering the biotic-abiotic interface for biocompatibility, adhesion, electron transfer, and maximum surface area remains a challenge. Prior approaches to interface modification lack simple processability, the ability to pattern the materials, and/or a significant enhancement in currents. Here, a novel conductive polymer coating that significantly enhances current densities relative to unmodified electrodes in microbial bioelectronics is reported. The coating is based on a blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) crosslinked with poly(2-hydroxyethylacrylate) (PHEA) along with a thin polydopamine (PDA) layer for adhesion to an underlying indium tin oxide (ITO) electrode. When used as an interface layer with the current-producing bacterium Shewanella oneidensis MR-1, this material produces a 178-fold increase in the current density compared to unmodified electrodes, a current gain that is higher than previously reported thin-film 2D coatings and 3D conductive polymer coatings. The chemistry, morphology, and electronic properties of the coatings are characterized and the implementation of these coated electrodes for use in microbial fuel cells, multiplexed bioelectronic devices, and organic electrochemical transistor based microbial sensors are demonstrated. It is envisioned that this simple coating will advance the development of microbial bioelectronic devices.


Assuntos
Eletrônica , Polímeros , Condutividade Elétrica , Eletrodos , Polímeros/química
10.
ACS Synth Biol ; 9(12): 3245-3253, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33226772

RESUMO

Recombination can be used in the laboratory to overcome component limitations in synthetic biology by creating enzymes that exhibit distinct activities and stabilities from native proteins. To investigate how recombination affects the properties of an oxidoreductase that transfers electrons in cells, we created ferredoxin (Fd) chimeras by recombining distantly related cyanobacterial and cyanomyophage Fds (53% identity) that present similar midpoint potentials but distinct thermostabilities. Fd chimeras having a wide range of amino acid substitutions retained the ability to coordinate an iron-sulfur cluster, although their thermostabilities varied with the fraction of residues inherited from each parent. The midpoint potentials of chimeric Fds also varied. However, all of the synthetic Fds exhibited midpoint potentials outside of the parental protein range. Each of the chimeric Fds could also support electron transfer between Fd-NADP reductase and sulfite reductase in Escherichia coli, although the chimeric Fds varied in the expression required for similar levels of cellular electron transfer. These results show how Fds can be diversified through recombination and reveal differences in the inheritance of thermostability and electrochemical properties. Furthermore, they illustrate how electron transfer efficiencies of chimeric Fds can be rapidly evaluated using a synthetic metabolic pathway.


Assuntos
Ferredoxinas/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cianobactérias/metabolismo , Transporte de Elétrons , Escherichia coli/metabolismo , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/genética , Cinética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Temperatura , Temperatura de Transição , Proteínas Virais/genética
11.
ACS Synth Biol ; 9(11): 3104-3113, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33104325

RESUMO

Monitoring microbial reactions in highly opaque or autofluorescent environments like soils, seawater, and wastewater remains challenging. To develop a simple approach for observing post-translational reactions within microbes situated in environmental matrices, we designed a methyl halide transferase (MHT) fragment complementation assay that reports by synthesizing an indicator gas. We show that backbone fission within regions of high sequence variability in the Rossmann domain yields split MHT (sMHT) AND gates whose fragments cooperatively associate to synthesize CH3Br. Additionally, we identify a sMHT whose fragments require fusion to pairs of interacting partner proteins for maximal activity. We also show that sMHT fragments fused to FKBP12 and the FKBP-rapamycin binding domain of mTOR display significantly enhanced CH3Br production in the presence of rapamycin. This gas production is reversed in the presence of the competitive inhibitor of FKBP12/FKPB dimerization, indicating that sMHT is a reversible reporter of post-translational reactions. This sMHT represents the first genetic AND gate that reports on protein-protein interactions via an indicator gas. Because indicator gases can be measured in the headspaces of complex environmental samples, this assay should be useful for monitoring the dynamics of diverse molecular interactions within microbes situated in hard-to-image marine and terrestrial matrices.


Assuntos
Gases/metabolismo , Transferases/genética , Dimerização , Pentosiltransferases/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/farmacologia , Proteína 1A de Ligação a Tacrolimo/genética
12.
J Biol Chem ; 295(31): 10610-10623, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32434930

RESUMO

Marine cyanobacteria are infected by phages whose genomes encode ferredoxin (Fd) electron carriers. These Fds are thought to redirect the energy harvested from light to phage-encoded oxidoreductases that enhance viral fitness, but it is unclear how the biophysical properties and partner specificities of phage Fds relate to those of photosynthetic organisms. Here, results of a bioinformatics analysis using a sequence similarity network revealed that phage Fds are most closely related to cyanobacterial Fds that transfer electrons from photosystems to oxidoreductases involved in nutrient assimilation. Structural analysis of myovirus P-SSM2 Fd (pssm2-Fd), which infects the cyanobacterium Prochlorococcus marinus, revealed high levels of similarity to cyanobacterial Fds (root mean square deviations of ≤0.5 Å). Additionally, pssm2-Fd exhibited a low midpoint reduction potential (-336 mV versus a standard hydrogen electrode), similar to other photosynthetic Fds, although it had lower thermostability (Tm = 28 °C) than did many other Fds. When expressed in an Escherichia coli strain deficient in sulfite assimilation, pssm2-Fd complemented bacterial growth when coexpressed with a P. marinus sulfite reductase, revealing that pssm2-Fd can transfer electrons to a host protein involved in nutrient assimilation. The high levels of structural similarity with cyanobacterial Fds and reactivity with a host sulfite reductase suggest that phage Fds evolved to transfer electrons to cyanobacterially encoded oxidoreductases.


Assuntos
Proteínas de Bactérias , Bacteriófagos/enzimologia , Ferredoxinas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Prochlorococcus , Proteínas Virais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Prochlorococcus/enzimologia , Prochlorococcus/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Methods Enzymol ; 621: 191-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31128779

RESUMO

Protein fission and fusion can be used to create biomolecules with new structures and functions, including circularly permuted proteins that require post-translational modifications for activity, split protein AND gates that require multiple inputs for activity, and fused domains that function as chemical-dependent protein switches. Herein we describe how transposon mutagenesis can be used for protein design to create libraries of permuted, split, or domain-inserted proteins. When coupled with a functional screen or selection, these approaches can rapidly diversify the topologies and functions of natural proteins and create useful protein components for synthetic biology.


Assuntos
Elementos de DNA Transponíveis , Engenharia de Proteínas/métodos , Proteínas/genética , Animais , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutagênese , Biologia Sintética/métodos
15.
Protein Eng Des Sel ; 32(11): 489-501, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32626892

RESUMO

Adenylate kinase (AK) orthologs with a range of thermostabilities were subjected to random circular permutation, and deep mutational scanning was used to evaluate where new protein termini were nondisruptive to activity. The fraction of circularly permuted variants that retained function in each library correlated with AK thermostability. In addition, analysis of the positional tolerance to new termini, which increase local conformational flexibility, showed that bonds were either functionally sensitive to cleavage across all homologs, differentially sensitive, or uniformly tolerant. The mobile AMP-binding domain, which displays the highest calculated contact energies, presented the greatest tolerance to new termini across all AKs. In contrast, retention of function in the lid and core domains was more dependent upon AK melting temperature. These results show that family permutation profiling identifies primary structure that has been selected by evolution for dynamics that are critical to activity within an enzyme family. These findings also illustrate how deep mutational scanning can be applied to protein homologs in parallel to differentiate how topology, stability, and local energetics govern mutational tolerance.


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Temperatura , Adenilato Quinase/genética , Estabilidade Enzimática/genética , Biblioteca Gênica , Mutação , Desnaturação Proteica , Engenharia de Proteínas
16.
Nat Chem Biol ; 15(2): 189-195, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559426

RESUMO

Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain. We show that the latter domain insertion design strategy yields an allosteric ferredoxin switch that acquires an oxygen-tolerant [2Fe-2S] cluster and can use different chemicals, including a therapeutic drug and an environmental pollutant, to control the production of a reduced metabolite in Escherichia coli and cell lysates.


Assuntos
Transporte de Elétrons/fisiologia , Metaloproteínas/fisiologia , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Escherichia coli/metabolismo , Ferredoxinas/fisiologia , Metaloproteínas/genética , Mutagênese Sítio-Dirigida/métodos , Processamento de Proteína Pós-Traducional/fisiologia
17.
Nucleic Acids Res ; 46(13): e76, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29912470

RESUMO

Deep mutational scanning has been used to create high-resolution DNA sequence maps that illustrate the functional consequences of large numbers of point mutations. However, this approach has not yet been applied to libraries of genes created by random circular permutation, an engineering strategy that is used to create open reading frames that express proteins with altered contact order. We describe a new method, termed circular permutation profiling with DNA sequencing (CPP-seq), which combines a one-step transposon mutagenesis protocol for creating libraries with a functional selection, deep sequencing and computational analysis to obtain unbiased insight into a protein's tolerance to circular permutation. Application of this method to an adenylate kinase revealed that CPP-seq creates two types of vectors encoding each circularly permuted gene, which differ in their ability to express proteins. Functional selection of this library revealed that >65% of the sampled vectors that express proteins are enriched relative to those that cannot translate proteins. Mapping enriched sequences onto structure revealed that the mobile AMP binding and rigid core domains display greater tolerance to backbone fragmentation than the mobile lid domain, illustrating how CPP-seq can be used to relate a protein's biophysical characteristics to the retention of activity upon permutation.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese , Análise de Sequência de DNA/métodos , Adenilato Quinase/genética , Elementos de DNA Transponíveis , Variação Genética
18.
Methods Mol Biol ; 1498: 295-308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27709583

RESUMO

Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.


Assuntos
Mutagênese/genética , Proteínas/genética , Transposases/genética , Sequência de Aminoácidos/genética , Elementos de DNA Transponíveis/genética , Vetores Genéticos/genética , Engenharia de Proteínas/métodos , Dobramento de Proteína
19.
Biochemistry ; 55(51): 7047-7064, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27966889

RESUMO

The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.


Assuntos
Bactérias/metabolismo , Elétrons , Ferredoxinas/metabolismo , Redes e Vias Metabólicas , Sequência de Aminoácidos , Bactérias/citologia , Transporte de Elétrons , Ferredoxinas/química , Ferredoxinas/genética , Proteínas Ferro-Enxofre/classificação , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Modelos Moleculares , Mutação , Oxirredução , Filogenia , Conformação Proteica , Homologia de Sequência de Aminoácidos
20.
ACS Synth Biol ; 5(5): 415-25, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26976658

RESUMO

Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement in which native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein's functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AKs with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and it reveals a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection.


Assuntos
Adenilato Quinase/química , Adenilato Quinase/genética , Aminoácidos/química , Aminoácidos/genética , Elementos de DNA Transponíveis/genética , Biblioteca Gênica , Mutagênese/genética , Peptídeos/química , Peptídeos/genética , Fosfotransferases/química , Fosfotransferases/genética , Engenharia de Proteínas/métodos , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/genética , Biologia Sintética/métodos , Transposases/química , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA