Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317439

RESUMO

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

2.
Nat Commun ; 12(1): 643, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510142

RESUMO

High-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.

3.
Struct Dyn ; 8(1): 014501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511247

RESUMO

Femtosecond carrier dynamics in layered 2H-MoTe2 semiconductor crystals have been investigated using soft x-ray transient absorption spectroscopy at the x-ray free-electron laser (XFEL) of the Pohang Accelerator Laboratory. Following above-bandgap optical excitation of 2H-MoTe2, the photoexcited hole distribution is directly probed via short-lived transitions from the Te 3d 5/2 core level (M5-edge, 572-577 eV) to transiently unoccupied states in the valence band. The optically excited electrons are separately probed via the reduced absorption probability at the Te M5-edge involving partially occupied states of the conduction band. A 400 ± 110 fs delay is observed between this transient electron signal near the conduction band minimum compared to higher-lying states within the conduction band, which we assign to hot electron relaxation. Additionally, the transient absorption signals below and above the Te M5 edge, assigned to photoexcited holes and electrons, respectively, are observed to decay concomitantly on a 1-2 ps timescale, which is interpreted as electron-hole recombination. The present work provides a benchmark for applications of XFELs for soft x-ray absorption studies of carrier-specific dynamics in semiconductors, and future opportunities enabled by this method are discussed.

4.
ACS Nano ; 14(11): 15829-15840, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33085888

RESUMO

We employ few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to reveal simultaneously the intra- and interband carrier relaxation and the light-induced structural dynamics in nanoscale thin films of layered 2H-MoTe2 semiconductor. By interrogating the valence electronic structure via localized Te 4d (39-46 eV) and Mo 4p (35-38 eV) core levels, the relaxation of the photoexcited hole distribution is directly observed in real time. We obtain hole thermalization and cooling times of 15 ± 5 fs and 380 ± 90 fs, respectively, and an electron-hole recombination time of 1.5 ± 0.1 ps. Furthermore, excitations of coherent out-of-plane A1g (5.1 THz) and in-plane E1g (3.7 THz) lattice vibrations are visualized through oscillations in the XUV absorption spectra. By comparison to Bethe-Salpeter equation simulations, the spectral changes are mapped to real-space excited-state displacements of the lattice along the dominant A1g coordinate. By directly and simultaneously probing the excited carrier distribution dynamics and accompanying femtosecond lattice displacement in 2H-MoTe2 within a single experiment, our work provides a benchmark for understanding the interplay between electronic and structural dynamics in photoexcited nanomaterials.

5.
Phys Rev Lett ; 123(16): 163201, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702368

RESUMO

We report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry. The experimental results obtained at the Free-Electron Laser in Hamburg (FLASH) thus correspond to transient energy shifts on the order of a few meV, induced by strong XUV fields. These results open up a new way of performing nonperturbative XUV nonlinear optics for the light-matter interaction of resonant electronic transitions in atoms at short wavelengths.

6.
Phys Rev Lett ; 123(10): 103001, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573300

RESUMO

We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2p-3d bound-bound transitions between the spin-orbit multiplets ^{3}P_{0,1,2} and ^{3}D_{1,2,3} of the transiently produced doubly charged Ne^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.3) fs. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the ac Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron laser radiation when the phase-locked pump and probe pulses precisely overlap in time.

7.
J Phys Chem Lett ; 10(6): 1382-1387, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30835480

RESUMO

Disulfide bonds are pivotal for the structure, function, and stability of proteins, and understanding ultraviolet (UV)-induced S-S bond cleavage is highly relevant for elucidating the fundamental mechanisms underlying protein photochemistry. Here, the near-UV photodecomposition mechanisms in gas-phase dimethyl disulfide, a prototype system with a S-S bond, are probed by ultrafast transient X-ray absorption spectroscopy. The evolving electronic structure during and after the dissociation is simultaneously monitored at the sulfur L1,2,3-edges and the carbon K-edge with 100 fs (FWHM) temporal resolution using the broadband soft X-ray spectrum from a femtosecond high-order harmonics light source. Dissociation products are identified with the help of ADC and RASPT2 electronic-structure calculations. Rapid dissociation into two CH3S radicals within 120 ± 30 fs is identified as the major relaxation pathway after excitation with 267 nm radiation. Additionally, a 30 ± 10% contribution from asymmetric CH3S2 + CH3 dissociation is indicated by the appearance of CH3 radicals, which is, however, at least partly the result of multiphoton excitation.

8.
J Am Chem Soc ; 139(46): 16576-16583, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083165

RESUMO

Molecular triplet states constitute a crucial gateway in the photochemical reactions of organic molecules by serving as a reservoir for the excess electronic energy. Here, we report the remarkable sensitivity of soft X-ray transient absorption spectroscopy for following the intricate electronic structure changes accompanying the non-adiabatic transition of an excited molecule from the singlet to the triplet manifold. Core-level X-ray spectroscopy at the carbon-1s K-edge (284 eV) is applied to identify the role of the triplet state (T1, 3ππ*) in the ultraviolet-induced photochemistry of pentane-2,4-dione (acetylacetone, AcAc). The excited-state dynamics initiated at 266 nm (1ππ*, S2) is investigated with element- and site-specificity using broadband soft X-ray pulses produced by high harmonic generation, in combination with time-dependent density functional theory calculations of the X-ray spectra for the excited electronic singlet and triplet states. The evolution of the core-to-valence resonances at the carbon K-edge establishes an ultrafast population of the T1 state (3ππ*) in AcAc via intersystem crossing on a 1.5 ± 0.2 ps time scale.

9.
Science ; 356(6333): 54-59, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386006

RESUMO

The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a tabletop apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.

10.
J Chem Phys ; 144(12): 124311, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036452

RESUMO

Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C-I bond at this wavelength produces iodine atoms both in the ground ((2)P3/2, I) and spin-orbit excited ((2)P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ(∗) C-I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ(∗) states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ(∗)(C-I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for theoretical calculations on the nature of core-excited states in halogenated hydrocarbons, especially in the transition state region along the C-I reaction coordinate.

11.
J Phys Chem Lett ; 6(24): 5072-7, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26636176

RESUMO

Femtosecond extreme ultraviolet (XUV) pulses produced by high harmonic generation are used to probe the transition-state region in the 266 nm photodissociation of CH3I by the real-time evolution of core-to-valence transitions near the iodine N-edge at 45-60 eV. During C-I bond breaking, new core-to-valence electronic states appear in the spectra, which decay concomitantly with the rise of the atomic iodine resonances of I((2)P3/2) and I*((2)P1/2). The short-lived features are assigned to repulsive valence-excited transition-state regions of (3)Q0 and (1)Q1, which can connect to transient core-excited states via promotion of 4d(I) core electrons. A simplified one-electron transition picture is described that accurately predicts the relative energies of the transient states observed. The transition-state resonances reach a maximum at ∼40 fs and decay to complete C-I dissociation in ∼90 fs, representing the shortest-lived chemical transition state observed by core-level, XUV, or X-ray spectroscopy.

12.
J Chem Phys ; 141(16): 164308, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362300

RESUMO

Element-specific single photon photodissociation dynamics of CH2IBr and core-to-valence absorption spectroscopy of CH2Br radicals are investigated using femtosecond high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy. Photodissociation of CH2IBr along both the C-I or C-Br reaction coordinates is observed in real-time following excitation at 266 nm. At this wavelength, C-I dissociation is the dominant reaction channel and C-Br dissociation is observed as a minor pathway. Both photodissociation pathways are probed simultaneously through individual 4d(I) N(4/5) and 3d(Br) M(4/5) core-to-valence transitions. The 3d(Br) M(4/5) pre-edge absorption spectrum of the CH2Br radical photoproduct corresponding to the C-I dissociation channel is characterized for the first time. Although the radical's singly occupied molecular orbital (SOMO) is mostly localized on the central carbon atom, the 3d(Br) → π*(SOMO) resonances at 68.5 eV and 69.5 eV are detected 2 eV below the parent molecule 3d(Br) → σ*(LUMO) transitions. Core-to-valence XUV absorption spectroscopy provides a unique probe of the local electronic structure of the radical species in reference to the Br reporter atom. The measured times for C-I dissociation leading to I and I* atomic products are 48 ± 12 fs and 44 ± 4 fs, respectively, while the measured C-Br dissociation time leading to atomic Br is 114 ± 17 fs. The investigation performed here demonstrates the capability of femtosecond time-resolved core-level spectroscopy utilizing multiple reporter atoms simultaneously.

13.
J Chem Phys ; 134(2): 024514, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21241127

RESUMO

Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH(2)-COOH) and doubly deprotonated ((-)S-CH(2)-COO(-)) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S(1) and S(2) excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the π(CO) (*)←n(O) transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an α-thiol-substituted acyl radical (α-TAR, S-CH(2)-CO(●)). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 ± 5 fs; subsequent unimolecular decay took 400 ± 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 ± 10 fs radical formation; 420 ± 40 fs decay). The production of the α-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly (≤100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.


Assuntos
Tioglicolatos/química , Cinética , Nanoestruturas/química , Processos Fotoquímicos , Espectrofotometria Ultravioleta , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA