Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18181, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107323

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks an actionable target with limited treatment options beyond conventional chemotherapy. Therapeutic failure is often encountered due to inherent or acquired resistance to chemotherapy. Previous studies implicated PI3K/Akt/mTOR signaling pathway in cancer stem cells (CSCs) enrichment and hence chemoresistance. The present study aimed at investigating the potential effect of piperine (PIP), an amide alkaloid isolated from Piper nigrum, on enhancing the sensitivity of TNBC cells to doxorubicin (DOX) in vitro on MDA-MB-231 cell line and in vivo in an animal model of Ehrlich ascites carcinoma solid tumor. Results showed a synergistic interaction between DOX and PIP on MDA-MB-231 cells. In addition, the combination elicited enhanced suppression of PI3K/Akt/mTOR signaling that paralleled an upregulation in this pathway's negative regulator, PTEN, along with a curtailment in the levels of the CSCs surrogate marker, aldehyde dehydrogenase-1 (ALDH-1). Meanwhile, in vivo investigations demonstrated the potential of the combination regimen to enhance necrosis while downregulating PTEN and curbing PI3K levels as well as p-Akt, mTOR, and ALDH-1 immunoreactivities. Notably, the combination failed to change cleaved poly-ADP ribose polymerase levels suggesting a pro-necrotic rather than pro-apoptotic mechanism. Overall, these findings suggest a potential role of PIP in decreasing the resistance to DOX in vitro and in vivo, likely by interfering with the PI3K/Akt/mTOR pathway and CSCs.


Assuntos
Alcaloides , Benzodioxóis , Doxorrubicina , Células-Tronco Neoplásicas , Fosfatidilinositol 3-Quinases , Piperidinas , Alcamidas Poli-Insaturadas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Doxorrubicina/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Piperidinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Humanos , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Sinergismo Farmacológico , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Front Pharmacol ; 15: 1362675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962320

RESUMO

Sympathetic activation triggered by chronic stress afflicting cancer survivors is an emerging modulator of tumorigenesis. Adrenergic blockade was previously associated with improving response to doxorubicin (DOX) in triple-negative breast cancer (TNBC), yet the precise underlying mechanisms remain obscure. The resilience of cancer stem cells (CSCs) during chemotherapy fosters resistance and relapse. Hypoxia-inducible factor-1α (HIF-1α) and ß-catenin are intertwined transcriptional factors that enrich CSCs and evidence suggests that their expression could be modulated by systemic adrenergic signals. Herein, we aimed to explore the impact of adrenoreceptor blockade using carvedilol (CAR) on DOX and its potential to modulate CSCs overcoming chemoresistance. To achieve this aim, in vitro studies were conducted using adrenaline-preincubated MDA-MB-231 cells and in vivo studies using a chronic restraint stress-promoted solid tumor mouse model. Results revealed that adrenaline increased TNBC proliferation and induced a phenotypic switch reminiscent of CSCs, as evidenced by enhanced mammosphere formation. These results paralleled an increase in aldehyde dehydrogenase-1 (ALDH-1) and Nanog expression levels as well as HIF-1α and ß-catenin upsurge. In vivo, larger tumor volumes were observed in mice under chronic stress compared to their unstressed counterparts. Adrenergic blockade using CAR, however, enhanced the impact DOX had on halting TNBC cell proliferation and tumor growth via enhanced apoptosis. CAR also curbed HIF-1α and ß-catenin tumor levels subsequently suppressing ALDH-1 and SOX2. Our study unveils a central role for HIF-1α linking stress-induced sympathetic activation fueling CSC enrichment via the ß-catenin pathway. It also highlights novel insights into CAR's capacity in reversing DOX chemoresistance in TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA