Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Biol ; 29(18): 3094-3100.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31402303

RESUMO

Stochastic mechanisms diversify cell fate in organisms ranging from bacteria to humans [1-4]. In the anchor cell/ventral uterine precursor cell (AC/VU) fate decision during C. elegans gonadogenesis, two "α cells," each with equal potential to be an AC or a VU, interact via LIN-12/Notch and its ligand LAG-2/DSL [5, 6]. This LIN-12/Notch-mediated interaction engages feedback mechanisms that amplify a stochastic initial difference between the two α cells, ensuring that the cell with higher lin-12 activity becomes the VU while the other becomes the AC [7-9]. The initial difference between the α cells was originally envisaged as a random imbalance from "noise" in lin-12 expression/activity [6]. However, subsequent evidence that the relative birth order of the α cells biases their fates suggested other factors may be operating [7]. Here, we investigate the nature of the initial difference using high-throughput lineage analysis [10]; GFP-tagged endogenous LIN-12, LAG-2, and HLH-2, a conserved transcription factor that orchestrates AC/VU development [7, 11]; and tissue-specific hlh-2 null alleles. We identify two stochastic elements: relative birth order, which largely originates at the beginning of the somatic gonad lineage three generations earlier, and onset of HLH-2 expression, such that the α cell whose parent expressed HLH-2 first is biased toward the VU fate. We find that these elements are interrelated, because initiation of HLH-2 expression is linked to the birth of the parent cell. Finally, we provide a potential deterministic mechanism for the HLH-2 expression bias by showing that hlh-2 is required for LIN-12 expression in the α cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gônadas/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Genes Reporter , Gônadas/citologia , Gônadas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Organogênese , Receptores Notch/genética , Receptores Notch/metabolismo , Diferenciação Sexual , Transdução de Sinais , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 110(35): 14278-83, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23918381

RESUMO

During meiosis, two consecutive rounds of chromosome segregation yield four haploid gametes from one diploid cell. The Polo kinase Cdc5 is required for meiotic progression, but how Cdc5 coordinates multiple cell-cycle events during meiosis I is not understood. Here we show that CDC5-dependent phosphorylation of Rec8, a subunit of the cohesin complex that links sister chromatids, is required for efficient cohesin removal from chromosome arms, which is a prerequisite for meiosis I chromosome segregation. CDC5 also establishes conditions for centromeric cohesin removal during meiosis II by promoting the degradation of Spo13, a protein that protects centromeric cohesin during meiosis I. Despite CDC5's central role in meiosis I, the protein kinase is dispensable during meiosis II and does not even phosphorylate its meiosis I targets during the second meiotic division. We conclude that Cdc5 has evolved into a master regulator of the unique meiosis I chromosome segregation pattern.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Meiose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
3.
Mol Biol Cell ; 23(16): 3122-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22718910

RESUMO

The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.


Assuntos
Meiose , Mitose , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esporos Fúngicos/citologia , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
4.
J Neurosci ; 27(23): 6128-40, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17553985

RESUMO

Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance both memory and synaptic plasticity. The current model for the action of HDAC inhibitors assumes that they alter gene expression globally and thus affect memory processes in a nonspecific manner. Here, we show that the enhancement of hippocampus-dependent memory and hippocampal synaptic plasticity by HDAC inhibitors is mediated by the transcription factor cAMP response element-binding protein (CREB) and the recruitment of the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CBP) via the CREB-binding domain of CBP. Furthermore, we show that the HDAC inhibitor trichostatin A does not globally alter gene expression but instead increases the expression of specific genes during memory consolidation. Our results suggest that HDAC inhibitors enhance memory processes by the activation of key genes regulated by the CREB:CBP transcriptional complex.


Assuntos
Proteína de Ligação a CREB/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Inibidores de Histona Desacetilases , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Ativação Transcricional/fisiologia , Animais , Proteína de Ligação a CREB/genética , Inibidores Enzimáticos/farmacologia , Feminino , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/enzimologia , Ativação Transcricional/efeitos dos fármacos
5.
Learn Mem ; 13(5): 609-17, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16980541

RESUMO

Transcriptional activation is a key process required for long-term memory formation. Recently, the transcriptional coactivator CREB-binding protein (CBP) was shown to be critical for hippocampus-dependent long-term memory and hippocampal synaptic plasticity. As a coactivator with intrinsic histone acetyltransferase activity, CBP interacts with numerous transcription factors and contains multiple functional domains. Currently, it is not known which transcription factor-binding domain of CBP is essential for memory storage. Using mice that carry inactivating mutations in the CREB-binding (KIX) domain of the coactivator CBP (CBPKIX/KIX mice), we show that the KIX domain is required for long-term memory storage. These results are the first to identify an in vivo function for the KIX domain of CBP in the brain, and they suggest that KIX-interacting transcription factors recruit CBP histone acetyltransferase activity during long-term memory storage. One such KIX-interacting factor is the transcription factor CREB. Using quantitative real-time RT-PCR, we find that the expression of specific CREB target genes is reduced in the hippocampi of CBPKIX/KIX mice during memory consolidation. The recruitment of the transcriptional coactivator CBP via the KIX domain thus imparts target gene-dependent selectivity to CREB-driven transcriptional regulation, thereby activating genes required for the long-term storage of hippocampus-dependent memory.


Assuntos
Proteína de Ligação a CREB/metabolismo , Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteína de Ligação a CREB/genética , Hipocampo/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação Puntual , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA