Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Microbiol Spectr ; : e0174024, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431896

RESUMO

Microbial secondary metabolites play crucial ecological roles in governing species interactions and contributing to their defense strategies. Their unique structures and potent bioactivities have been key in discovering antibiotics and anticancer drugs. Genome sequencing has undoubtedly revealed that myxobacteria constitute a huge reservoir of secondary metabolites as the well-known producers, actinomycetes. However, because most secondary metabolites are not produced in the laboratory context, the natural products from myxobacteria characterized to date represent only the tip of the iceberg. By combining the engineering of a dedicated Myxococcus xanthus DZ2 chassis strain with a two-step growth medium protocol, we provide a new approach called two-step Protocol for Resource Integration and Maximization-Biomolecules Overproduction and Optimal Screening Therapeutics (2PRIM-BOOST) for the production of non-ribosomal peptides synthetases (NRPS)/polyketides synthases (PKS) secondary metabolites from myxobacteria. We further show that the 2PRIM-BOOST strategy will facilitate the screening of secondary metabolites for biological activities of medical interest. As proof of concept, using a constitutive strong promoter, the myxoprincomide from M. xanthus DZ2 has been efficiently produced and its biosynthesis has been enhanced using the 2PRIM-BOOST approach, allowing the identification of new features of myxoprincomide. This strategy should allow the chances to produce and discover new NRPS, PKS, and mixed NRPS/PKS hybrid natural metabolites that are currently considered as cryptic and are the most represented in myxobacteria.IMPORTANCEMicrobial secondary metabolites are important in species interactions and are also a prolific source of drugs. Myxobacteria are ubiquitous soil-dwelling bacteria constituting a huge reservoir of secondary metabolites. However, because most of these molecules are not produced in the laboratory context, one can estimate that only one-tenth have been characterized to date. Here, we developed a new strategy called two-step Protocol for Resource Integration and Maximization-Biomolecules Overproduction and Optimal Screening Therapeutics (2PRIM-BOOST) that combines the engineering of a dedicated Myxococcus xanthus chassis strain together with growth medium optimization. By combining these strategies with the insertion of a constitutive promoter upstream the biosynthetic gene cluster (BGC), the production of myxoprincomide, a characterized low-produced secondary metabolite, was successfully and significantly increased. The 2PRIM-BOOST enriches the toolbox used to produce previously cryptic metabolites, unveil their ecological role, and provide new molecules of medical interest.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719030

RESUMO

Iron­sulfur (Fe-S) clusters are one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play crucial physiological roles. Fe-S protein biogenesis is a complex process that starts with the acquisition of the elements (iron and sulfur atoms) and their assembly into an Fe-S cluster that is subsequently inserted into the target proteins. The Fe-S protein biogenesis is ensured by multiproteic systems conserved across all domains of life. Here, we provide an overview on how bacterial genetics approaches have permitted to reveal and dissect the Fe-S protein biogenesis process in vivo.


Assuntos
Proteínas de Bactérias , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Bactérias/genética , Bactérias/metabolismo
3.
mBio ; 14(1): e0300122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656032

RESUMO

Myxococcus xanthus possesses two Fe-S cluster biogenesis machineries, ISC (iron-sulfur cluster) and SUF (sulfur mobilization). Here, we show that in comparison to the phylogenetically distant Enterobacteria, which also have both machineries, M. xanthus evolved an independent transcriptional scheme to coordinately regulate the expression of these machineries. This transcriptional response is directed by RisR, which we show to belong to a phylogenetically distant and biochemically distinct subgroup of the Rrf2 transcription factor family, in comparison to IscR that regulates the isc and suf operons in Enterobacteria. We report that RisR harbors an Fe-S cluster and that holo-RisR acts as a repressor of both the isc and suf operons, in contrast to Escherichia coli, where holo-IscR represses the isc operon whereas apo-IscR activates the suf operon. In addition, we establish that the nature of the cluster and the DNA binding sites of RisR, in the isc and suf operons, diverge from those of IscR. We further show that in M. xanthus, the two machineries appear to be fully interchangeable in maintaining housekeeping levels of Fe-S cluster biogenesis and in synthesizing the Fe-S cluster for their common regulator, RisR. We also demonstrate that in response to oxidative stress and iron limitation, transcriptional upregulation of the M. xanthus isc and suf operons was mediated solely by RisR and that the contribution of the SUF machinery was greater than the ISC machinery. Altogether, these findings shed light on the diversity of homeostatic mechanisms exploited by bacteria to coordinately use two Fe-S cluster biogenesis machineries. IMPORTANCE Fe-S proteins are ubiquitous and control a wide variety of key biological processes; therefore, maintaining Fe-S cluster homeostasis is an essential task for all organisms. Here, we provide the first example of how a bacterium from the Deltaproteobacteria branch coordinates expression of two Fe-S cluster biogenesis machineries. The results revealed a new model of coordination, highlighting the unique and common features that have independently emerged in phylogenetically distant bacteria to maintain Fe-S cluster homeostasis in response to environmental changes. Regulation is orchestrated by a previously uncharacterized transcriptional regulator, RisR, belonging to the Rrf2 superfamily, whose members are known to sense diverse environmental stresses frequently encountered by bacteria. Understanding how M. xanthus maintains Fe-S cluster homeostasis via RisR regulation revealed a strategy reflective of the aerobic lifestyle of this organsim. This new knowledge also paves the way to improve production of Fe-S-dependent secondary metabolites using M. xanthus as a chassis.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Myxococcus xanthus , Proteínas de Escherichia coli/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Redes Reguladoras de Genes , Escherichia coli/genética , Ferro/metabolismo , Enxofre/metabolismo , Proteínas Ferro-Enxofre/química
4.
Mol Microbiol ; 116(1): 231-244, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595838

RESUMO

Enhancer binding proteins (EBPs) are key players of σ54 -regulation that control transcription in response to environmental signals. In the anaerobic microorganism Desulfovibrio vulgaris Hildenborough (DvH), orp operons have been previously shown to be coregulated by σ54 -RNA polymerase, the integration host factor IHF and a cognate EBP, OrpR. In this study, ChIP-seq experiments indicated that the OrpR regulon consists of only the two divergent orp operons. In vivo data revealed that (i) OrpR is absolutely required for orp operons transcription, (ii) under anaerobic conditions, OrpR binds on the two dedicated DNA binding sites and leads to high expression levels of the orp operons, (iii) increasing the redox potential of the medium leads to a drastic down-regulation of the orp operons expression. Moreover, combining functional and biophysical studies on the anaerobically purified OrpR leads us to propose that OrpR senses redox potential variations via a redox-sensitive [4Fe-4S]2+ cluster in the sensory PAS domain. Overall, the study herein presents the first characterization of a new Fe-S redox regulator belonging to the σ54 -dependent transcriptional regulator family probably advantageously selected by cells adapted to the anaerobic lifestyle to monitor redox stress conditions.


Assuntos
Desulfovibrio vulgaris/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Ferro-Enxofre/metabolismo , Fator sigma/metabolismo , Transcrição Gênica/genética , Técnicas Biossensoriais , Proteínas de Ligação a DNA/genética , Desulfovibrio vulgaris/genética , Meio Ambiente , Oxirredução , Ativação Transcricional/genética
5.
Adv Microb Physiol ; 76: 1-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32408945

RESUMO

Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.


Assuntos
Escherichia coli/fisiologia , Proteínas Ferro-Enxofre/fisiologia , Ferro/metabolismo , Enxofre/metabolismo , Proteína de Transporte de Acila/fisiologia , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Humanos , Proteínas de Ligação ao Ferro , Proteínas Ferro-Enxofre/química , Oxirredução , Saccharomyces cerevisiae/fisiologia , Frataxina
6.
Dalton Trans ; 48(42): 15767-15771, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31538176

RESUMO

In sharp contrast with the standard [2 + 2 + 2] cycloaddition reaction of diyne/ene, cobalt-mediated cycloadditions with γ-alkylidenebutenolide led to unprecedented cobalt(iii) polycyclic complexes. A plausible mechanism supported by a computational study based on an unusual fragmentation of the butenolide moiety was postulated to account for this original reaction.

7.
Sci Rep ; 9(1): 712, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679587

RESUMO

Despite recent advances in understanding the biogenesis of iron-sulfur (Fe-S) proteins, most studies focused on aerobic bacteria as model organisms. Accordingly, multiple players have been proposed to participate in the Fe-S delivery step to apo-target proteins, but critical gaps exist in the knowledge of Fe-S proteins biogenesis in anaerobic organisms. Mrp/NBP35 ATP-binding proteins are a subclass of the soluble P-loop containing nucleoside triphosphate hydrolase superfamily (P-loop NTPase) known to bind and transfer Fe-S clusters in vitro. Here, we report investigations of a novel atypical two-domain Mrp/NBP35 ATP-binding protein named MrpORP associating a P-loop NTPase domain with a dinitrogenase iron-molybdenum cofactor biosynthesis domain (Di-Nase). Characterization of full length MrpORP, as well as of its two domains, showed that both domains bind Fe-S clusters. We provide in vitro evidence that the P-loop NTPase domain of the MrpORP can efficiently transfer its Fe-S cluster to apo-target proteins of the ORange Protein (ORP) complex, suggesting that this novel protein is involved in the maturation of these Fe-S proteins. Last, we showed for the first time, by fluorescence microscopy imaging a polar localization of a Mrp/NBP35 protein.


Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Proteínas AAA/genética , Proteínas AAA/metabolismo , Proteínas de Bactérias/genética , Citosol , Desulfovibrio/classificação , Desulfovibrio/genética , Proteínas de Ligação ao GTP/genética , Proteínas Ferro-Enxofre/genética , Molibdoferredoxina/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Ligação Proteica , Domínios Proteicos
8.
Environ Microbiol ; 20(1): 281-292, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124868

RESUMO

Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Desulfotomaculum/metabolismo , Desulfovibrio vulgaris/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Açúcares/metabolismo , Simbiose/fisiologia , Técnicas de Cocultura , Fermentação/fisiologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/crescimento & desenvolvimento , Hidrogênio/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Enxofre/metabolismo
9.
Org Lett ; 19(8): 2062-2065, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28387512

RESUMO

A convenient, versatile, and easy to handle intramolecular hydrofunctionalization of alkenes (C-O and C-N bonds formation) is reported using a novel niobium-based catalytic system. This atom economic and eco-friendly methodology provides an additional synthetic tool for the straightforward formation of valuable building blocks enabling molecular complexity. Various pyran, furan, pyrrolidine, piperidine, lactone, and lactam derivatives as well as spirocyclic compounds are produced in high yields and selectivities.

10.
Org Lett ; 18(17): 4242-5, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27552360

RESUMO

Herein, the use of a well-defined low-valent cobalt(I) catalyst [HCo(PMe3)4] capable of performing the highly regio- and stereoselective hydrosilylation of internal alkynes is reported. The reaction can be applied to a variety of hydrosilanes, symmetrical and unsymmetrical alkynes, giving in many cases a single hydrosilylation isomer. Experimental and theoretical studies suggest the key step to be a hydro-cobaltation and that the reaction proceeds through a classical Chalk-Harrod mechanism.

11.
Chemistry ; 22(25): 8553-8, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27167983

RESUMO

Investigations based on NMR spectroscopy, mass spectrometry, and DFT calculations shed light on the metallic species generated in the rhodium-catalyzed asymmetric [2+2+2] cycloaddition reaction between diynes and isocyanates with the chiral phosphate TRIP. The catalytic mixture comprising [{Rh(cod)Cl}2 ], 1,4-diphenylphosphinobutane (dppb), and Ag(S)-TRIP actually gives rise to two species, both having an effect on the stereoselectivity. One is a rhodium(I) complex in which TRIP is a weakly coordinating counterion, whereas the other is a bimetallic Rh/Ag complex in which TRIP is a strongly coordinating X-type ligand.

12.
Org Lett ; 18(9): 2292-5, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27082935

RESUMO

Herein an extremely versatile, well-defined, low-valent cobalt catalyst [Co(PMe3)4] capable of intermolecular and intramolecular imine-directed C2-alkylation and alkenylation of indoles is reported. The reaction proceeds in the absence of reducing agents or additives, affording a range of substituted indoles and dihydropyrroloindoles in high yields and regioselectivities. With the aid of deuterium labeling studies and DFT (Density Functional Theory) calculations, a mechanism is proposed that is based on a Ligand-to-Ligand Hydrogen Transfer pathway.

13.
J Biol Inorg Chem ; 21(1): 53-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748795

RESUMO

A novel metalloprotein containing a unique [S2MoS2CuS2MoS2](3-) cluster, designated as Orange Protein (ORP), was isolated for the first time from Desulfovibrio gigas, a sulphate reducer. The orp operon is conserved in almost all sequenced Desulfovibrio genomes and in other anaerobic bacteria, however, so far D. gigas ORP had been the only ORP characterized in the literature. In this work, the purification of another ORP isolated form Desulfovibrio alaskensis G20 is reported. The native protein is monomeric (12443.8 ± 0.1 Da by ESI-MS) and contains also a MoCu cluster with characteristic absorption bands at 337 and 480 nm, assigned to S-Mo charge transfer bands. Desulfovibrio alaskensis G20 recombinant protein was obtained in the apo-form from E. coli. Cluster reconstitution studies and UV-visible titrations with tetrathiomolybdate of the apo-ORP incubated with Cu ions indicate that the cluster is incorporated in a protein metal-assisted synthetic mode and the protein favors the 2Mo:1Cu stoichiometry. In Desulfovibrio alaskensis G20, the orp genes are encoded by a polycistronic unit composed of six genes whereas in Desulfovibrio vulgaris Hildenborough the same genes are organized into two divergent operons, although the composition in genes is similar. The gene expression of ORP (Dde_3198) increased 6.6 ± 0.5 times when molybdate was added to the growth medium but was not affected by Cu(II) addition, suggesting an involvement in molybdenum metabolism directly or indirectly in these anaerobic bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/química , Desulfovibrio/metabolismo , Molibdênio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
14.
Front Microbiol ; 6: 1378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696987

RESUMO

Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well-documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle. In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH). This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

15.
Org Lett ; 17(15): 3754-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26219218

RESUMO

The first enantioselective metal-catalyzed [2 + 2 + 2] cycloaddition involving a double asymmetric induction has been devised. It relies on the use of an in situ generated chiral cationic rhodium(I) catalyst with a matched chiral ligand/chiral counterion pair. Careful optimization of the catalytic system, as well as of the reaction conditions, led to atroposelective [2 + 2 + 2] pyridone cycloadducts with high ee's up to 96%. This strategy outperformed those previously described involving a chiral ligand only or a chiral counterion only.

16.
Org Lett ; 17(4): 844-7, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25668409

RESUMO

A new and efficient synthesis of highly sensitive benzosilacyclobutenes has been developed. For the first time, these compounds can be synthesized in very high yields by a mild, unprecedented intramolecular niobium-catalyzed [2 + 2 + 2] cycloaddition of easily accessible tetrasubstituted sila-triynes. An easy access to highly functionalized benzosilacyclobutenes enlarging the number of potential applications in organic and material chemistry is described.

17.
J Am Chem Soc ; 137(7): 2448-51, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625542

RESUMO

A facile C-H activation and functionalization of aromatic imines is presented using low-valent cobalt catalysts. Using Co(PMe3)4 as catalyst we have developed an efficient and simple protocol for the C-H/hydroarylation of alkynes with an anti selectivity. Deuterium-labeling experiments, DFT calculations coupled with the use of a well-defined catalyst have for the first time shed light on the elusive black box of cobalt catalyzed C-H functionalization.

18.
Chem Commun (Camb) ; 50(63): 8663-6, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24942914

RESUMO

We describe an efficient synthetic route toward novel organocobalt complexes [(η(4)-C4(nT)4)Co(η(5)-C5H5)] with n = 1, 2, 3 thiophene rings. Solution-processed bulk heterojunctions solar cells based on CpCoCb(3T)4:PCBM blends achieve power conversion efficiencies of up to 2.1%.

19.
PLoS One ; 9(1): e86507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466126

RESUMO

Transcriptional activation of σ(54)-dependent promoters is usually tightly regulated in response to environmental cues. The high abundance of potential σ(54)-dependent promoters in the anaerobe bacteria, Desulfovibrio vulgaris Hildenborough, reflects the high versatility of this bacteria suggesting that σ(54) factor is the nexus of a large regulatory network. Understanding the key players of σ(54)-regulation in this organism is therefore essential to gain insights into the adaptation to anaerobiosis. Recently, the D. vulgaris orp genes, specifically found in anaerobe bacteria, have been shown to be transcribed by the RNA polymerase coupled to the σ(54) alternative sigma factor. In this study, using in vitro binding experiments and in vivo reporter fusion assays in the Escherichia coli heterologous host, we showed that the expression of the divergent orp promoters is strongly dependent on the integration host factor IHF. Bioinformatic and mutational analysis coupled to reporter fusion activities and mobility shift assays identified two functional IHF binding site sequences located between the orp1 and orp2 promoters. We further determined that the D. vulgaris DVU0396 (IHFα) and DVU1864 (IHFß) subunits are required to control the expression of the orp operons suggesting that they form a functionally active IHF heterodimer. Interestingly results obtained from the in vivo inactivation of DVU0396, which is required for orp operons transcription, suggest that several functionally IHF active homodimer or heterodimer are present in D. vulgaris.


Assuntos
Desulfovibrio vulgaris/genética , Fatores Hospedeiros de Integração/genética , Óperon/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Ativação Transcricional/genética
20.
Chem Commun (Camb) ; 49(71): 7833-5, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23887729

RESUMO

Enantioselective cationic Rh(I)-catalyzed [2+2+2] cycloaddition reactions between diynes and isocyanates relying on the chiral anion strategy have been devised. In the presence of [Rh(cod)Cl]2, 1,4-bis(diphenylphosphino)butane, and the silver phosphate salt Ag(S)-TRIP as the unique source of chirality, axially chiral pyridones were isolated with ees up to 82%. This approach is novel in the field of chiral anion-mediated asymmetric catalysis since atroposelective transformations have so far remained unprecedented. It also proves to be complementary to the classical strategy based on chiral L-type ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA