Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Stem Cell Res ; 64: 102910, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103773

RESUMO

We performed reprogramming of human erythroblasts derived from CD34+ hematopoietic stem / progenitor cells of a healthy donor. CD34+ cells were differentiated in-vitro into a pure population of CD36+ erythroblasts and nucleofected with four episomal plasmids expressing SOX2, OCT3/4, KLF4, LIN28, L-MYC and TP53-shRNA. The established iPSC line showed normal karyotype. Pluripotency was confirmed by expression of pluripotency markers and in-vitro differentiation into tissues of all three germ layers. The UBTi001-A iPSC line might provide an attractive source for developmental research on human hematopoiesis and erythropoiesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Linhagem Celular , RNA Interferente Pequeno/metabolismo , Eritroblastos
2.
Cell Mol Life Sci ; 79(6): 326, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35635656

RESUMO

Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity.


Assuntos
Transdução de Sinais , Proteína Supressora de Tumor p53 , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Nutrientes , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Sci Adv ; 8(3): eabh2635, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061544

RESUMO

Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.

4.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568522

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent and intractable form of cardiac decompensation commonly associated with diastolic dysfunction. Here, we show that diastolic dysfunction in patients with HFpEF is associated with a cardiac deficit in nicotinamide adenine dinucleotide (NAD+). Elevating NAD+ by oral supplementation of its precursor, nicotinamide, improved diastolic dysfunction induced by aging (in 2-year-old C57BL/6J mice), hypertension (in Dahl salt-sensitive rats), or cardiometabolic syndrome (in ZSF1 obese rats). This effect was mediated partly through alleviated systemic comorbidities and enhanced myocardial bioenergetics. Simultaneously, nicotinamide directly improved cardiomyocyte passive stiffness and calcium-dependent active relaxation through increased deacetylation of titin and the sarcoplasmic reticulum calcium adenosine triphosphatase 2a, respectively. In a long-term human cohort study, high dietary intake of naturally occurring NAD+ precursors was associated with lower blood pressure and reduced risk of cardiac mortality. Collectively, these results suggest NAD+ precursors, and especially nicotinamide, as potential therapeutic agents to treat diastolic dysfunction and HFpEF in humans.


Assuntos
Insuficiência Cardíaca , Animais , Estudos de Coortes , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico
5.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416207

RESUMO

The aim of this study was to assess the prognostic and predictive value of an untargeted assessment of tumor fractions in the plasma of metastatic breast cancer patients and to compare circulating tumor DNA (ctDNA) with circulating tumor cells (CTC) and conventional tumor markers. In metastatic breast cancer patients (n = 29), tumor fractions in plasma were assessed using the untargeted mFAST-SeqS method from 127 serial blood samples. Resulting z-scores for the ctDNA were compared to tumor fractions established with the recently published ichorCNA algorithm and associated with the clinical outcome. We observed a close correlation between mFAST-SeqS z-scores and ichorCNA ctDNA quantifications. Patients with mFAST-SeqS z-scores above three (34.5%) showed significantly worse overall survival (p = 0.014) and progression-free survival (p = 0.018) compared to patients with lower values. Elevated z-score values were clearly associated with radiologically proven progression. The baseline CTC count, carcinoembryonic antigen (CEA), and cancer antigen (CA)15-5 had no prognostic impact on the outcome of patients in the analyzed cohort. This proof of principle study demonstrates the prognostic impact of ctDNA levels detected with mFAST-SeqS as a very fast and cost-effective means to assess the ctDNA fraction without prior knowledge of the genetic landscape of the tumor. Furthermore, mFAST-SeqS-based ctDNA levels provided an early means of measuring treatment response.

6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 467-478, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29374543

RESUMO

Lysosomal acid lipase (LAL) is the only known enzyme, which hydrolyzes cholesteryl esters and triacylglycerols in lysosomes of multiple cells and tissues. Here, we explored the role of LAL in brown adipose tissue (BAT). LAL-deficient (Lal-/-) mice exhibit markedly reduced UCP1 expression in BAT, modified BAT morphology with accumulation of lysosomes, and mitochondrial dysfunction, consequently leading to regular hypothermic events in mice kept at room temperature. Cold exposure resulted in reduced lipid uptake into BAT, thereby aggravating dyslipidemia and causing life threatening hypothermia in Lal-/- mice. Linking LAL as a potential regulator of lipoprotein lipase activity, we found Angptl4 mRNA expression upregulated in BAT. Our data demonstrate that LAL is critical for shuttling fatty acids derived from circulating lipoproteins to BAT during cold exposure. We conclude that inhibited lysosomal lipid hydrolysis in BAT leads to impaired thermogenesis in Lal-/- mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Esterol Esterase/metabolismo , Termogênese , Acetilcoenzima A/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Animais , Autofagia , Temperatura Corporal , Carnitina/análogos & derivados , Carnitina/metabolismo , Temperatura Baixa , Progressão da Doença , Dislipidemias/metabolismo , Dislipidemias/patologia , Metabolismo Energético , Glucose/metabolismo , Hipotermia Induzida , Gotículas Lipídicas/metabolismo , Lipólise , Masculino , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Oxirredução , Consumo de Oxigênio , Esterol Esterase/deficiência , Proteína Desacopladora 1/metabolismo
7.
Adv Clin Chem ; 80: 73-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28431643

RESUMO

The analysis of cell-free circulating tumor DNA (ctDNA) is a very promising tool and might revolutionize cancer care with respect to early detection, identification of minimal residual disease, assessment of treatment response, and monitoring tumor evolution. ctDNA analysis, often referred to as "liquid biopsy" offers what tissue biopsies cannot-a continuous monitoring of tumor-specific changes during the entire course of the disease. Owing to technological improvements, efforts for the establishment of preanalytical and analytical benchmark, and the inclusion of ctDNA analyses in clinical trial, an actual clinical implementation has come within easy reach. In this chapter, recent advances of the analysis of ctDNA are summarized starting from the discovery of cell-free DNA, to methodological approaches and the clinical applicability.


Assuntos
Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Marcadores Genéticos , Humanos , Mutação , Valor Preditivo dos Testes
8.
Adv Exp Med Biol ; 924: 147-155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753036

RESUMO

Recent progress in the analysis of cell-free DNA fragments (cell-free circulating tumor DNA, ctDNA) now allows monitoring of tumor genomes by non-invasive means. However, previous studies with plasma DNA from patients with cancer demonstrated highly variable allele frequencies of ctDNA. Comprehensive genome-wide analysis of tumor genomes is greatly facilitated when plasma DNA has increased amounts of ctDNA. In order to develop a fast and cost-effective pre-screening method for the identification of plasma samples suitable for further extensive qualitative analysis, we adapted the recently described FAST-SeqS method. We show that our modified FAST-SeqS method (mFAST-SeqS) can be used as a pre-screening tool for an estimation of the ctDNA percentage. Moreover, since the genome-wide mFAST-SeqS z-scores correlate with the actual tumor content in plasma samples, changes in ctDNA levels associated with response to treatment can be easily monitored without prior knowledge of the genetic composition of tumor samples.


Assuntos
Aneuploidia , Neoplasias da Mama/genética , DNA de Neoplasias/genética , Neoplasias da Próstata/genética , Análise de Sequência de DNA/métodos , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , DNA de Neoplasias/sangue , Feminino , Estudo de Associação Genômica Ampla , Células HT29 , Humanos , Modelos Lineares , Células MCF-7 , Masculino , Mutação , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Nat Genet ; 48(10): 1273-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571261

RESUMO

The analysis of cell-free DNA (cfDNA) in plasma represents a rapidly advancing field in medicine. cfDNA consists predominantly of nucleosome-protected DNA shed into the bloodstream by cells undergoing apoptosis. We performed whole-genome sequencing of plasma DNA and identified two discrete regions at transcription start sites (TSSs) where nucleosome occupancy results in different read depth coverage patterns for expressed and silent genes. By employing machine learning for gene classification, we found that the plasma DNA read depth patterns from healthy donors reflected the expression signature of hematopoietic cells. In patients with cancer having metastatic disease, we were able to classify expressed cancer driver genes in regions with somatic copy number gains with high accuracy. We were able to determine the expressed isoform of genes with several TSSs, as confirmed by RNA-seq analysis of the matching primary tumor. Our analyses provide functional information about cells releasing their DNA into the circulation.


Assuntos
DNA/sangue , Expressão Gênica , Genoma Humano , Feminino , Humanos , Masculino , Neoplasias/sangue , Neoplasias/genética , Nucleossomos/genética , RNA/sangue , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição
10.
Nat Commun ; 7: 12008, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328849

RESUMO

Genomic alterations in metastatic prostate cancer remain incompletely characterized. Here we analyse 493 prostate cancer cases from the TCGA database and perform whole-genome plasma sequencing on 95 plasma samples derived from 43 patients with metastatic prostate cancer. From these samples, we identify established driver aberrations in a cancer-related gene in nearly all cases (97.7%), including driver gene fusions (TMPRSS2:ERG), driver focal deletions (PTEN, RYBP and SHQ1) and driver amplifications (AR and MYC). In serial plasma analyses, we observe changes in focal amplifications in 40% of cases. The mean time interval between new amplifications was 26.4 weeks (range: 5-52 weeks), suggesting that they represent rapid adaptations to selection pressure. An increase in neuron-specific enolase is accompanied by clonal pattern changes in the tumour genome, most consistent with subclonal diversification of the tumour. Our findings suggest a high plasticity of prostate cancer genomes with newly occurring focal amplifications as a driving force in progression.


Assuntos
Aberrações Cromossômicas , Genoma Humano , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Biópsia , Diferenciação Celular , Análise por Conglomerados , DNA de Neoplasias/genética , Progressão da Doença , Deleção de Genes , Dosagem de Genes , Humanos , Masculino , Metástase Neoplásica , Antígeno Prostático Específico/sangue , Proteínas Proto-Oncogênicas c-myc/genética , Análise de Sequência de DNA
11.
Methods Mol Biol ; 1379: 45-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26608289

RESUMO

Liquid biopsies represent novel promising tools to determine the impact of clonal heterogeneity on clinical outcomes with the potential to identify novel therapeutic targets in cancer patients. We developed a low-coverage whole-genome sequencing approach in order to noninvasively establish copy number aberrations in plasma DNA from metastasized cancer patients. Using plasma-Seq we were able to monitor genetic evolution including the acquirement of novel copy number changes, such as focal amplifications and chromosomal polysomies. The big advantage of our approach is that it can be performed on a benchtop sequencer, speed, and cost-effectiveness. Therefore, plasma-Seq represents an easy, fast, and affordable tool to provide the urgently needed genetic follow-up data. Here we describe our method including plasma DNA extraction, library preparation, and bioinformatic analyses.


Assuntos
Quimioprevenção , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Genômica/métodos , Neoplasias/sangue , Neoplasias/prevenção & controle , Análise de Sequência de DNA/métodos , Variações do Número de Cópias de DNA , Reparo do DNA , Humanos , Masculino , Metástase Neoplásica , Neoplasias/patologia , Reprodutibilidade dos Testes
12.
Clin Chem ; 61(6): 838-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25896989

RESUMO

BACKGROUND: Recent progress in the analysis of cell-free DNA fragments [cell-free circulating tumor DNA (ctDNA)] now allows monitoring of tumor genomes by noninvasive means. However, previous studies with plasma DNA from patients with cancer demonstrated highly variable allele frequencies of ctDNA. The comprehensive analysis of tumor genomes is greatly facilitated when plasma DNA has increased amounts of ctDNA. Therefore, a fast and cost-effective prescreening method to identify such plasma samples without previous knowledge about alterations in the respective tumor genome could assist in the selection of samples suitable for further extensive qualitative analysis. METHODS: We adapted the recently described Fast Aneuploidy Screening Test-Sequencing System (FAST-SeqS) method, which was originally established as a simple, effective, noninvasive screening method for fetal aneuploidy from maternal blood. RESULTS: We show that our modified FAST-SeqS method (mFAST-SeqS) can be used as a prescreening tool for an estimation of ctDNA percentage. With a combined evaluation of genome-wide and chromosome arm-specific z-scores from dilution series with cell line DNA and by comparisons of plasma-Seq profiles with data from mFAST-SeqS, we established a detection limit of ≥10% mutant alleles. Plasma samples with an mFAST-SeqS z-score >5 showed results that were highly concordant with those of copy number profiles obtained from our previously described plasma-Seq approach. CONCLUSIONS: Advantages of this approach include the speed and cost-effectiveness of the assay and that no prior knowledge about the genetic composition of tumor samples is necessary to identify plasma DNA samples with >10% ctDNA content.


Assuntos
DNA/sangue , Técnicas Genéticas , Neoplasias/sangue , Células Neoplásicas Circulantes , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Estudos de Casos e Controles , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
13.
Breast Cancer Res ; 16(4): 421, 2014 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-25107527

RESUMO

INTRODUCTION: The management of metastatic breast cancer needs improvement. As clinical evaluation is not very accurate in determining the progression of disease, the analysis of circulating tumor DNA (ctDNA) has evolved to a promising noninvasive marker of disease evolution. Indeed, ctDNA was reported to represent a highly sensitive biomarker of metastatic cancer disease directly reflecting tumor burden and dynamics. However, at present little is known about the dynamic range of ctDNA in patients with metastatic breast cancer. METHODS: In this study, 74 plasma DNA samples from 58 patients with metastasized breast cancer were analyzed with a microfluidic device to determine the plasma DNA size distribution and copy number changes in the plasma were identified by whole-genome sequencing (plasma-Seq). Furthermore, in an index patient we conducted whole-genome, exome, or targeted deep sequencing of the primary tumor, metastases, and circulating tumor cells (CTCs). Deep sequencing was done to accurately determine the allele fraction (AFs) of mutated DNA fragments. RESULTS: Although all patients had metastatic disease, plasma analyses demonstrated highly variable AFs of mutant fragments. We analyzed an index patient with more than 100,000 CTCs in detail. We first conducted whole-genome, exome, or targeted deep sequencing of four different regions from the primary tumor and three metastatic lymph node regions, which enabled us to establish the phylogenetic relationships of these lesions, which were consistent with a genetically homogeneous cancer. Subsequent analyses of 551 CTCs confirmed the genetically homogeneous cancer in three serial blood analyses. However, the AFs of ctDNA were only 2% to 3% in each analysis, neither reflecting the tumor burden nor the dynamics of this progressive disease. These results together with high-resolution plasma DNA fragment sizing suggested that differences in phagocytosis and DNA degradation mechanisms likely explain the variable occurrence of mutated DNA fragments in the blood of patients with cancer. CONCLUSIONS: The dynamic range of ctDNA varies substantially in patients with metastatic breast cancer. This has important implications for the use of ctDNA as a predictive and prognostic biomarker.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , DNA de Neoplasias/sangue , Neoplasias da Mama/genética , Análise por Conglomerados , Biologia Computacional , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , Exoma , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Metástase Neoplásica , Células Neoplásicas Circulantes , Valores de Referência
14.
Sci Transl Med ; 6(247): 247ra101, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080476

RESUMO

Glioblastoma multiforme (GBM) is the most frequent and aggressive brain tumor in adults. The dogma that GBM spread is restricted to the brain was challenged by reports on extracranial metastases after organ transplantation from GBM donors. We identified circulating tumor cells (CTCs) in peripheral blood (PB) from 29 of 141 (20.6%) GBM patients by immunostaining of enriched mononuclear cells with antibodies directed against glial fibrillary acidic protein (GFAP). Tumor cell spread was not significantly enhanced by surgical intervention. The tumor nature of GFAP-positive cells was supported by the absence of those cells in healthy volunteers and the presence of tumor-specific aberrations such as EGFR gene amplification and gains and losses in genomic regions of chromosomes 7 and 10. Release of CTCs was associated with EGFR gene amplification, suggesting a growth potential of these cells. We demonstrate that hematogenous GBM spread is an intrinsic feature of GBM biology.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/secundário , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 7 , Hibridização Genômica Comparativa , Receptores ErbB/genética , Feminino , Amplificação de Genes , Proteína Glial Fibrilar Ácida/análise , Glioblastoma/química , Glioblastoma/genética , Glioblastoma/cirurgia , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/química
15.
Nature ; 510(7505): 402-6, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24805236

RESUMO

PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol (3,4,5)-triphosphate, thereby opposing the activity of class I phosphatidylinositol 3-kinases that mediate growth- and survival-factor signalling through phosphatidylinositol 3-kinase effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, here we generate an RNA interference-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal Pten knockdown in the haematopoietic compartment produced highly disseminated T-cell acute lymphoblastic leukaemia. Notably, reactivation of PTEN mainly reduced T-cell leukaemia dissemination but had little effect on tumour load in haematopoietic organs. Leukaemia infiltration into the intestine was dependent on CCR9 G-protein-coupled receptor signalling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, G-protein-coupled receptors may have an unanticipated role in driving tumour growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumour maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.


Assuntos
Leucemia/enzimologia , Leucemia/fisiopatologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral/fisiologia , Animais , Quimiocinas/metabolismo , Técnicas de Silenciamento de Genes , Leucemia/genética , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
16.
PLoS Genet ; 10(3): e1004271, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24676216

RESUMO

Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR), such as cetuximab and panitumumab, have evolved to important therapeutic options in metastatic colorectal cancer (CRC). However, almost all patients with clinical response to anti-EGFR therapies show disease progression within a few months and little is known about mechanism and timing of resistance evolution. Here we analyzed plasma DNA from ten patients treated with anti-EGFR therapy by whole genome sequencing (plasma-Seq) and ultra-sensitive deep sequencing of genes associated with resistance to anti-EGFR treatment such as KRAS, BRAF, PIK3CA, and EGFR. Surprisingly, we observed that the development of resistance to anti-EGFR therapies was associated with acquired gains of KRAS in four patients (40%), which occurred either as novel focal amplifications (n = 3) or as high level polysomy of 12p (n = 1). In addition, we observed focal amplifications of other genes recently shown to be involved in acquired resistance to anti-EGFR therapies, such as MET (n = 2) and ERBB2 (n = 1). Overrepresentation of the EGFR gene was associated with a good initial anti-EGFR efficacy. Overall, we identified predictive biomarkers associated with anti-EGFR efficacy in seven patients (70%), which correlated well with treatment response. In contrast, ultra-sensitive deep sequencing of KRAS, BRAF, PIK3CA, and EGFR did not reveal the occurrence of novel, acquired mutations. Thus, plasma-Seq enables the identification of novel mutant clones and may therefore facilitate early adjustments of therapies that may delay or prevent disease progression.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Biomarcadores Tumorais/sangue , Cetuximab , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Receptores ErbB/imunologia , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Panitumumabe , Proteínas Proto-Oncogênicas c-met/sangue , Receptor ErbB-2/sangue
17.
Genome Med ; 5(8): 73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23998943

RESUMO

For cancer patients, the current approach to prognosis relies on clinicopathological staging, but usually this provides little information about the individual response to treatment. Therefore, there is a tremendous need for protein and genetic biomarkers with predictive and prognostic information. As biomarkers are identified, the serial monitoring of tumor genotypes, which are instable and prone to changes under selection pressure, is becoming increasingly possible. To this end, circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) shed from primary and metastatic cancers may allow the non-invasive analysis of the evolution of tumor genomes during treatment and disease progression through 'liquid biopsies'. Here we review recent progress in the identification of CTCs among thousands of other cells in the blood and new high-resolution approaches, including recent microfluidic platforms, for dissecting the genomes of CTCs and obtaining functional data. We also discuss new ctDNA-based approaches, which may become a powerful alternative to CTC analysis. Together, these approaches provide novel biological insights into the process of metastasis and may elucidate signaling pathways involved in cell invasiveness and metastatic competence. In medicine these liquid biopsies may emerge to be powerful predictive and prognostic biomarkers and could therefore be instrumental for areas such as precision or personalized medicine.

19.
BMC Cancer ; 13: 358, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23883436

RESUMO

BACKGROUND: Cancer stem cell model hypothesizes existence of a small proportion of tumor cells capable of sustaining tumor formation, self-renewal and differentiation. In breast cancer, these cells were found to be associated with CD44⁺CD24-low and ALDH⁺ phenotype. Our study was performed to evaluate the suitability of current approaches for breast cancer stem cell analyses to evaluate heterogeneity of breast cancer cells through their extensive genetic and epigenetic characterization. METHODS: Breast cancer cell lines MCF7 and SUM159 were cultured in adherent conditions and as mammospheres. Flow cytometry sorting for CD44, CD24 and ALDH was performed. Sorted and unsorted populations, mammospheres and adherent cell cultures were subjected to DNA profiling by array CGH and methylation profiling by Epitect Methyl qPCR array. Methylation status of selected genes was further evaluated by pyrosequencing. Functional impact of methylation was evaluated by mRNA analysis for selected genes. RESULTS: Array CGH did not reveal any genomic differences. In contrast, putative breast cancer stem cells showed altered methylation levels of several genes compared to parental tumor cells. CONCLUSIONS: Our results underpin the hypothesis that epigenetic mechanisms seem to play a major role in the regulation of CSCs. However, it is also clear that more efficient methods for CSC enrichment are needed. This work underscores requirement of additional approaches to reveal heterogeneity within breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , Antígeno CD24/análise , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Feminino , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
20.
Genome Med ; 5(4): 30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23561577

RESUMO

BACKGROUND: Patients with prostate cancer may present with metastatic or recurrent disease despite initial curative treatment. The propensity of metastatic prostate cancer to spread to the bone has limited repeated sampling of tumor deposits. Hence, considerably less is understood about this lethal metastatic disease, as it is not commonly studied. Here we explored whole-genome sequencing of plasma DNA to scan the tumor genomes of these patients non-invasively. METHODS: We wanted to make whole-genome analysis from plasma DNA amenable to clinical routine applications and developed an approach based on a benchtop high-throughput platform, that is, Illuminas MiSeq instrument. We performed whole-genome sequencing from plasma at a shallow sequencing depth to establish a genome-wide copy number profile of the tumor at low costs within 2 days. In parallel, we sequenced a panel of 55 high-interest genes and 38 introns with frequent fusion breakpoints such as the TMPRSS2-ERG fusion with high coverage. After intensive testing of our approach with samples from 25 individuals without cancer we analyzed 13 plasma samples derived from five patients with castration resistant (CRPC) and four patients with castration sensitive prostate cancer (CSPC). RESULTS: The genome-wide profiling in the plasma of our patients revealed multiple copy number aberrations including those previously reported in prostate tumors, such as losses in 8p and gains in 8q. High-level copy number gains in the AR locus were observed in patients with CRPC but not with CSPC disease. We identified the TMPRSS2-ERG rearrangement associated 3-Mbp deletion on chromosome 21 and found corresponding fusion plasma fragments in these cases. In an index case multiregional sequencing of the primary tumor identified different copy number changes in each sector, suggesting multifocal disease. Our plasma analyses of this index case, performed 13 years after resection of the primary tumor, revealed novel chromosomal rearrangements, which were stable in serial plasma analyses over a 9-month period, which is consistent with the presence of one metastatic clone. CONCLUSIONS: The genomic landscape of prostate cancer can be established by non-invasive means from plasma DNA. Our approach provides specific genomic signatures within 2 days which may therefore serve as 'liquid biopsy'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA