Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Front Neurosci ; 16: 799787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221899

RESUMO

Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both "bottom-up" gain alterations in response to changes in environmental sound statistics as well as "top-down" mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.

3.
Neurobiol Dis ; 161: 105541, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34751141

RESUMO

Fragile X (FX) syndrome is one of the leading inherited causes of autism spectrum disorder (ASD). A majority of FX and ASD patients exhibit sensory hypersensitivity, including auditory hypersensitivity or hyperacusis, a condition in which everyday sounds are perceived as much louder than normal. Auditory processing deficits in FX and ASD also afford the opportunity to develop objective and quantifiable outcome measures that are likely to translate between humans and animal models due to the well-conserved nature of the auditory system and well-developed behavioral read-outs of sound perception. Therefore, in this study we characterized auditory hypersensitivity in a Fmr1 knockout (KO) transgenic rat model of FX using an operant conditioning task to assess sound detection thresholds and suprathreshold auditory reaction time-intensity (RT-I) functions, a reliable psychoacoustic measure of loudness growth, at a variety of stimulus frequencies, bandwidths, and durations. Male Fmr1 KO and littermate WT rats both learned the task at the same rate and exhibited normal hearing thresholds. However, Fmr1 KO rats had faster auditory RTs over a broad range of intensities and steeper RT-I slopes than WT controls, perceptual evidence of excessive loudness growth in Fmr1 KO rats. Furthermore, we found that Fmr1 KO animals exhibited abnormal perceptual integration of sound duration and bandwidth, with diminished temporal but enhanced spectral integration of sound intensity. Because temporal and spectral integration of sound stimuli were altered in opposite directions in Fmr1 KO rats, this suggests that abnormal RTs in these animals are evidence of aberrant auditory processing rather than generalized hyperactivity or altered motor responses. Together, these results are indicative of fundamental changes to low-level auditory processing in Fmr1 KO animals. Finally, we demonstrated that antagonism of metabotropic glutamate receptor 5 (mGlu5) selectively and dose-dependently restored normal loudness growth in Fmr1 KO rats, suggesting a pharmacologic approach for alleviating sensory hypersensitivity associated with FX. This study leverages the tractable nature of the auditory system and the unique behavioral advantages of rats to provide important insights into the nature of a centrally important yet understudied aspect of FX and ASD.


Assuntos
Síndrome do Cromossomo X Frágil , Hiperacusia , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Camundongos Knockout , Ratos , Ratos Transgênicos
4.
Front Mol Neurosci ; 14: 805929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069112

RESUMO

Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.

5.
Curr Top Behav Neurosci ; 51: 133-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32653998

RESUMO

Tinnitus and hyperacusis are debilitating conditions often associated with aging or exposure to intense noise or ototoxic drugs. One of the most reliable methods of inducing tinnitus is with high doses of sodium salicylate, the active ingredient in aspirin. High doses of salicylate have been widely used to investigate the functional neuroanatomy of tinnitus and hyperacusis. High doses of salicylate have been used to develop novel behavioral methods to detect the presence of tinnitus and hyperacusis in animal models. Salicylate typically induces a hearing loss of approximately 20 dB which greatly reduces the neural output of the cochlea. As this weak neural signal emerging from the cochlea is sequentially relayed to the cochlear nucleus, inferior colliculus, medial geniculate, and auditory cortex, the neural response to suprathreshold sounds is progressively amplified by a factor of 2-3 by the time the signal reaches the auditory cortex, a phenomenon referred to as enhanced central gain. Sound-evoked hyperactivity also occurred in the amygdala, a region that assigns emotional significance to sensory stimuli. Resting state functional magnetic imaging of the BOLD signal revealed salicylate-induced increases in spontaneous neural activity in the inferior colliculus, medial geniculate body, and auditory cortex as well as in non-auditory areas such as the amygdala, reticular formation, cerebellum, and other sensory areas. Functional connectivity of the BOLD signal revealed increased neural coupling between several auditory areas and non-auditory areas such as the amygdala, cerebellum, reticular formation, hippocampus, and caudate/putamen; these strengthened connections likely contribute to the multifaceted dimensions of tinnitus. Taken together, these results suggest that salicylate-induced tinnitus disrupts a complex neural network involving many auditory centers as well as brain regions involved with emotion, arousal, memory, and motor planning. These extra-auditory centers embellish the basic auditory percepts that results in tinnitus and which may also contribute to hyperacusis.


Assuntos
Hiperacusia , Zumbido , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Hiperacusia/induzido quimicamente , Neuroanatomia , Ratos , Ratos Sprague-Dawley , Salicilatos , Zumbido/induzido quimicamente
6.
Proc Natl Acad Sci U S A ; 117(42): 26460-26469, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020308

RESUMO

Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or "incubates") during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation. The dorsal hippocampus (DH) is involved in context-induced reinstatement of cocaine seeking but the role of the DH in cocaine seeking during prolonged abstinence has not been investigated. Here we found that transforming growth factor-ß (TGF-ß) superfamily member activin A is increased in the DH on abstinence day (AD) 30 but not AD1 following extended-access cocaine self-administration compared to saline controls. Moreover, activin A does not affect cocaine seeking on AD1 but regulates cocaine seeking on AD30 in a bidirectional manner. Next, we found that activin A regulates phosphorylation of NMDA receptor (NMDAR) subunit GluN2B and that GluN2B-containing NMDARs also regulate expression of cocaine seeking on AD30. Activin A and GluN2B-containing NMDARs have both previously been implicated in hippocampal synaptic plasticity. Therefore, we examined synaptic strength in the DH during prolonged abstinence and observed an increase in moderate long-term potentiation (LTP) in cocaine-treated rats compared to saline controls. Lastly, we examined the role of DH projections to the lateral septum (LS), a brain region implicated in cocaine seeking and found that DH projections to the LS govern cocaine seeking on AD30. Taken together, this study demonstrates a role for the DH in relapse behavior following prolonged abstinence from cocaine self-administration.


Assuntos
Comportamento de Procura de Droga/fisiologia , Hipocampo/metabolismo , Subunidades beta de Inibinas/metabolismo , Ativinas/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Extinção Psicológica/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração , Fator de Crescimento Transformador beta/metabolismo
7.
FASEB J ; 34(3): 3501-3518, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32039504

RESUMO

Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Animais , Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Modelos Biológicos
8.
Neuroscience ; 422: 212-227, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669363

RESUMO

Noise-induced hearing loss generally induces loudness recruitment, but sometimes gives rise to hyperacusis, a debilitating condition in which moderate intensity sounds are perceived abnormally loud. In an attempt to develop an animal model of loudness hyperacusis, we exposed rats to a 16-20 kHz noise at 104 dB SPL for 12 weeks. Behavioral reaction time-intensity functions were used to assess loudness growth functions before, during and 2-months post-exposure. During the exposure, loudness recruitment (R) was present in the region of hearing loss, but subtle evidence of hyperacusis (H) started to emerge at the border of the hearing loss. Unexpectedly, robust evidence of hyperacusis appeared below and near the edge of the hearing loss 2-months post-exposure. To identify the neural correlates of hyperacusis and test the central gain model of hyperacusis, we recorded population neural responses from the cochlea, auditory cortex and lateral amygdala 2-months post-exposure. Compared to controls, the neural output of the cochlea was greatly reduced in the noise group. Consistent with central gain models, the gross neural responses from the auditory cortex and amygdala were proportionately much larger than those from the cochlea. However, despite central amplification, the population responses in the auditory cortex and amygdala were still below the level needed to fully account for hyperacusis and/or recruitment. Having developed procedures that can consistently induce hyperacusis in rats, our results set the stage for future studies that seek to identify the neurobiological events that give rise to hyperacusis and to develop new therapies to treat this debilitating condition.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Córtex Auditivo/fisiopatologia , Cóclea/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Hiperacusia/fisiopatologia , Ruído/efeitos adversos , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Condicionamento Operante/fisiologia , Masculino , Ratos , Tempo de Reação/fisiologia
9.
J Neurophysiol ; 121(3): 893-907, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625004

RESUMO

Electrophysiological and imaging studies from humans suggest that the phantom sound of tinnitus is associated with abnormal thalamocortical neural oscillations (dysrhythmia) and enhanced gamma band activity in the auditory cortex. However, these models have seldom been tested in animal models where it is possible to simultaneously assess the neural oscillatory activity within and between the thalamus and auditory cortex. To explore this issue, we used multichannel electrodes to examine the oscillatory behavior of local field potentials recorded in the rat medial geniculate body (MBG) and primary auditory cortex (A1) before and after administering a dose of sodium salicylate (SS) that reliably induces tinnitus. In the MGB, SS reduced theta, alpha, and beta oscillations and decreased coherence (synchrony) between electrode pairs in theta, alpha, and beta bands but increased coherence in the gamma band. Within A1, SS significantly increased gamma oscillations, decreased theta power, and decreased coherence between electrode pairs in theta and alpha bands but increased coherence in the gamma band. When coherence was measured between one electrode in the MGB and another in A1, SS decreased coherence in beta, alpha, and theta bands but increased coherence in the gamma band. SS also increased cross-frequency coupling between the phase of theta oscillations in the MGB and amplitude of gamma oscillations in A1. Altogether, our results suggest that SS treatment fundamentally alters the manner in which thalamocortical circuits communicate, leading to excessive cortical gamma power and synchronization, neurophysiological changes implicated in tinnitus. Our data provide support for elements of both the thalamocortical dysrhythmia (TD) and synchronization by loss of inhibition (SLIM) models of tinnitus, demonstrating that increased cortical gamma band activity is associated with both enhanced theta-gamma coupling as well as decreases alpha power/coherence between the MGB and A1. NEW & NOTEWORTHY There are no effective drugs to alleviate the phantom sound of tinnitus because the physiological mechanisms leading to its generation are poorly understood. Neural models of tinnitus suggest that it arises from abnormal thalamocortical oscillations, but these models have not been extensively tested. This article identifies abnormal thalamocortical oscillations in a drug-induced tinnitus model. Our findings open up new avenues of research to investigate whether cellular mechanisms underlying thalamocortical oscillations are causally linked to tinnitus.


Assuntos
Córtex Auditivo/fisiopatologia , Ondas Encefálicas , Tálamo/fisiopatologia , Zumbido/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Salicilato de Sódio/toxicidade , Zumbido/etiologia
10.
Neuroscience ; 407: 93-107, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30292765

RESUMO

The central gain model of hyperacusis proposes that loss of auditory input can result in maladaptive neuronal gain increases in the central auditory system, leading to the over-amplification of sound-evoked activity and excessive loudness perception. Despite the attractiveness of this model, and supporting evidence for it, a critical test of the central gain theory requires that changes in sound-evoked activity be explicitly linked to perceptual alterations of loudness. Here we combined an operant conditioning task that uses a subject's reaction time to auditory stimuli to produce reliable measures of loudness growth with chronic electrophysiological recordings from the auditory cortex and inferior colliculus of awake, behaviorally-phenotyped animals. In this manner, we could directly correlate daily assessments of loudness perception with neurophysiological measures of sound encoding within the same animal. We validated this novel psychophysical-electrophysiological paradigm with a salicylate-induced model of hearing loss and hyperacusis, as high doses of sodium salicylate reliably induce temporary hearing loss, neural hyperactivity, and auditory perceptual disruptions like tinnitus and hyperacusis. Salicylate induced parallel changes to loudness growth and evoked response-intensity functions consistent with temporary hearing loss and hyperacusis. Most importantly, we found that salicylate-mediated changes in loudness growth and sound-evoked activity were correlated within individual animals. These results provide strong support for the central gain model of hyperacusis and demonstrate the utility of using an experimental design that allows for within-subject comparison of behavioral and electrophysiological measures, thereby making inter-subject variability a strength rather than a limitation.


Assuntos
Perda Auditiva/fisiopatologia , Hiperacusia/fisiopatologia , Percepção Sonora/fisiologia , Salicilato de Sódio/farmacologia , Estimulação Acústica/métodos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Feminino , Audição/efeitos dos fármacos , Audição/fisiologia , Perda Auditiva/tratamento farmacológico , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/fisiopatologia , Percepção Sonora/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Roedores
11.
Neuropsychopharmacology ; 43(11): 2299-2309, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131563

RESUMO

Inhibitors of phosphodiesterase-4 (PDE4) have beneficial effects on memory in preclinical and clinical studies. Development of these drugs has stalled due to dose-limiting side effects of nausea and emesis. While use of subtype-selective inhibitors (i.e., for PDE4A, B, or D) could overcome this issue, conservation of the catalytic region, to which classical inhibitors bind, limits this approach. The present study examined the effects of BPN14770, an allosteric inhibitor of PDE4D, which binds to a primate-specific, N-terminal region. In mice engineered to express PDE4D with this primate-specific sequence, BPN14770 was 100-fold more potent for improving memory than in wild-type mice; meanwhile, it exhibited low potency in a mouse surrogate model for emesis. BPN14770 also antagonized the amnesic effects of scopolamine, increased cAMP signaling in brain, and increased BDNF and markers of neuronal plasticity associated with memory. These data establish a relationship between PDE4D target engagement and effects on memory for BPN14770 and suggest clinical potential for PDE4D-selective inhibitors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Memória/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Fosfodiesterase 4/química , Ligação Proteica/fisiologia
12.
Hear Res ; 353: 197-203, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705607

RESUMO

Hyperacusis is a loudness hypersensitivity disorder in which moderate-intensity sounds are perceived as extremely loud, aversive and/or painful. To assess the aversive nature of sounds, we developed an Active Sound Avoidance Paradigm (ASAP) in which rats altered their place preference in a Light/Dark shuttle box in response to sound. When no sound (NS) was present, rats spent more than 95% of the time in the Dark Box versus the transparent Light Box. However, when a 60 or 90 dB SPL noise (2-20 kHz, 2-8 kHz, or 16-20 kHz bandwidth) was presented in the Dark Box, the rats'' preference for the Dark Box significantly decreased. Percent time in the dark decreased as sound intensity in the Dark Box increased from 60 dB to 90 dB SPL. Interestingly, the magnitude of the decrease was not a monotonic function of intensity for the 16-20 kHz noise and not related to the bandwidth of the 2-20 kHz and 2-8 kHz noise bands, suggesting that sound avoidance is not solely dependent on loudness but the aversive quality of the noise as well. Afterwards, we exposed the rats for 28 days to a 16-20 kHz noise at 102 dB SPL; this exposure produced a 30-40 dB permanent threshold shift at 16 and 32 kHz. Following the noise exposure, the rats were then retested on the ASAP paradigm. High-frequency hearing loss did not alter Dark Box preference in the no-sound condition. However, when the 2-20 kHz or 2-8 kHz noise was presented at 60 or 90 dB SPL, the rats avoided the Dark Box significantly more than they did before the exposure, indicating these two noise bands with energy below the region of hearing loss were perceived as more aversive. In contrast, when the 16-20 kHz noise was presented at 60 or 90 dB SPL, the rats remained in the Dark Box presumably because the high-frequency hearing loss made 16-20 kHz noise less audible and less aversive. These results indicate that when rats develop a high-frequency hearing loss, they become less tolerant of low frequency noise, i.e., high intensity sounds are perceived as more aversive and should be avoided.


Assuntos
Aprendizagem da Esquiva , Comportamento Animal , Perda Auditiva Provocada por Ruído/psicologia , Hiperacusia/psicologia , Percepção Sonora , Ruído/efeitos adversos , Estimulação Acústica , Animais , Limiar Auditivo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Hiperacusia/fisiopatologia , Masculino , Ratos Sprague-Dawley , Fatores de Tempo
13.
Cell Rep ; 18(12): 2807-2814, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329674

RESUMO

Synaptic protein synthesis is essential for modification of the brain by experience and is aberrant in several genetically defined disorders, notably fragile X (FX), a heritable cause of autism and intellectual disability. Neural activity directs local protein synthesis via activation of metabotropic glutamate receptor 5 (mGlu5), yet how mGlu5 couples to the intracellular signaling pathways that regulate mRNA translation is poorly understood. Here, we provide evidence that ß-arrestin2 mediates mGlu5-stimulated protein synthesis in the hippocampus and show that genetic reduction of ß-arrestin2 corrects aberrant synaptic plasticity and cognition in the Fmr1-/y mouse model of FX. Importantly, reducing ß-arrestin2 does not induce psychotomimetic activity associated with full mGlu5 inhibitors and does not affect Gq signaling. Thus, in addition to identifying a key requirement for mGlu5-stimulated protein synthesis, these data suggest that ß-arrestin2-biased negative modulators of mGlu5 offer significant advantages over first-generation inhibitors for the treatment of FX and related disorders.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/terapia , Terapia de Alvo Molecular , Neurônios/metabolismo , Biossíntese de Proteínas , Receptor de Glutamato Metabotrópico 5/metabolismo , beta-Arrestina 2/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Deleção de Genes , Heterozigoto , Hipocampo/patologia , Hipocampo/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais
14.
Hear Res ; 349: 208-222, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28286099

RESUMO

Tinnitus and hyperacusis are common and potentially serious hearing disorders associated with noise-, age- or drug-induced hearing loss. Accumulating evidence suggests that tinnitus and hyperacusis are linked to excessive neural activity in a distributed brain network that not only includes the central auditory pathway, but also brain regions involved in arousal, emotion, stress and motor control. Here we examine electrophysiological changes in two novel non-auditory areas implicated in tinnitus and hyperacusis: the caudal pontine reticular nucleus (PnC), involved in arousal, and the paraflocculus lobe of the cerebellum (PFL), implicated in head-eye coordination and gating tinnitus and we measure the changes in corticosterone stress hormone levels. Using the salicylate-induced model of tinnitus and hyperacusis, we found that long-latency (>10 ms) sound-evoked response components in both the brain regions were significantly enhanced after salicylate administration, while the short-latency responses were reduced, likely reflecting cochlear hearing loss. These results are consistent with the central gain model of tinnitus and hyperacusis, which proposes that these disorders arise from the amplification of neural activity in central auditory pathway plus other regions linked to arousal, emotion, tinnitus gating and motor control. Finally, we demonstrate that salicylate results in an increase in corticosterone level in a dose-dependent manner consistent with the notion that stress may interact with hearing loss in tinnitus and hyperacusis development. This increased stress response has the potential to have wide-ranging effects on the central nervous system and may therefore contribute to brain-wide changes in neural activity.


Assuntos
Cerebelo/fisiopatologia , Hiperacusia/fisiopatologia , Formação Reticular Mesencefálica/fisiopatologia , Tegmento Pontino/fisiopatologia , Estresse Psicológico/fisiopatologia , Zumbido/fisiopatologia , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Comportamento Animal , Biomarcadores/sangue , Corticosterona/sangue , Modelos Animais de Doenças , Emoções , Potenciais Evocados Auditivos , Audição , Hiperacusia/sangue , Hiperacusia/induzido quimicamente , Hiperacusia/psicologia , Masculino , Atividade Motora , Tegmento Pontino/patologia , Ratos Sprague-Dawley , Tempo de Reação , Salicilato de Sódio , Estresse Psicológico/sangue , Estresse Psicológico/psicologia , Fatores de Tempo , Zumbido/sangue , Zumbido/induzido quimicamente , Zumbido/psicologia
15.
Front Neurosci ; 10: 621, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149271

RESUMO

There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90-95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that weak signals once again become comfortably loud. While this gain enhancement is able to restore normal hearing under quiet conditions, it may not adequately compensate for peripheral dysfunction in more complex sound environments. In addition, excessive gain increases may convert recruitment into the debilitating condition known as hyperacusis.

16.
Front Neurol ; 5: 206, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386157

RESUMO

Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.

17.
Mol Brain ; 6: 15, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23566911

RESUMO

Loss of the translational repressor FMRP causes Fragile X syndrome. In healthy neurons, FMRP modulates the local translation of numerous synaptic proteins. Synthesis of these proteins is required for the maintenance and regulation of long-lasting changes in synaptic strength. In this role as a translational inhibitor, FMRP exerts profound effects on synaptic plasticity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Animais , Humanos , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Biossíntese de Proteínas
18.
Nature ; 480(7375): 63-8, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113615

RESUMO

Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Sinapses Elétricas/patologia , Mutação , Animais , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Síndrome , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
19.
J Neurophysiol ; 104(2): 1047-51, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20554840

RESUMO

Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). FMRP is a negative regulator of local mRNA translation downstream of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation. In the absence of FMRP there is excessive mGluR-dependent protein synthesis, resulting in exaggerated mGluR-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus. Understanding disease pathophysiology is critical for development of therapies for FXS and the question arises of whether it is more appropriate to target excessive LTD or excessive mGluR-dependent protein synthesis. Priming of long-term potentiation (LTP) is a qualitatively different functional consequence of Gp1 mGluR-stimulated protein synthesis at the same population of CA1 synapses where LTD can be induced. Therefore we determined if LTP priming, like LTD, is also disrupted in the Fmr1 knockout (KO) mouse. We found that mGluR-dependent priming of LTP is of comparable magnitude in wild-type (WT) and Fmr1 KO mice. However, whereas LTP priming requires acute stimulation of protein synthesis in WT mice, it is no longer protein synthesis dependent in the Fmr1 KO. These experiments show that the dysregulation of mGluR-mediated protein synthesis seen in Fmr1 KO mice has multiple consequences on synaptic plasticity, even within the same population of synapses. Furthermore, it suggests that there is a bifurcation in the Gp1 mGluR signaling pathway, with one arm triggering synaptic modifications such as LTP priming and LTD and the other stimulating protein synthesis that is permissive for these modifications.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Análise de Variância , Animais , Biofísica , Cicloeximida/farmacologia , Interações Medicamentosas , Estimulação Elétrica/métodos , Proteína do X Frágil da Deficiência Intelectual/genética , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Inibidores da Síntese de Proteínas/farmacologia
20.
Neuron ; 56(6): 955-62, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18093519

RESUMO

Fragile X syndrome (FXS) is the most common form of heritable mental retardation and the leading identified cause of autism. FXS is caused by transcriptional silencing of the FMR1 gene that encodes the fragile X mental retardation protein (FMRP), but the pathogenesis of the disease is unknown. According to one proposal, many psychiatric and neurological symptoms of FXS result from unchecked activation of mGluR5, a metabotropic glutamate receptor. To test this idea we generated Fmr1 mutant mice with a 50% reduction in mGluR5 expression and studied a range of phenotypes with relevance to the human disorder. Our results demonstrate that mGluR5 contributes significantly to the pathogenesis of the disease, a finding that has significant therapeutic implications for fragile X and related developmental disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Receptores de Glutamato Metabotrópico/genética , Estimulação Acústica/efeitos adversos , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica/genética , Heterozigoto , Aprendizagem/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise Multivariada , Plasticidade Neuronal , Neurônios/patologia , Neurônios/ultraestrutura , Fenótipo , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/deficiência , Convulsões/etiologia , Córtex Visual/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA