Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105000, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394001

RESUMO

VhChiP is a chitooligosaccharide-specific porin identified in the outer membrane of Vibrio campbellii type strain American Type Culture Collection BAA 1116. VhChiP contains three identical subunits, and in each subunit, the 19-amino acid N-terminal segment serves as a molecular plug (the "N-plug") that controls the closed/open dynamics of the neighboring pores. In this study, the crystal structures of VhChiP lacking the N-plug were determined in the absence and presence of chitohexaose. Binding studies of sugar-ligand interactions by single-channel recordings and isothermal microcalorimetry experiments suggested that the deletion of the N-plug peptide significantly weakened the sugar-binding affinity due to the loss of hydrogen bonds around the central affinity sites. Steered molecular dynamic simulations revealed that the movement of the sugar chain along the sugar passage triggered the ejection of the N-plug, while the H-bonds transiently formed between the reducing end GlcNAc units of the sugar chain with the N-plug peptide may help to facilitate sugar translocation. The findings enable us to propose the structural displacement model, which enables us to understand the molecular basis of chitooligosaccharide uptake by marine Vibrio bacteria.


Assuntos
Quitosana , Carboidratos , Quitina/metabolismo , Açúcares
2.
J Biol Chem ; 297(6): 101350, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715124

RESUMO

The marine bacterium Vibrio campbellii expresses a chitooligosaccharide-specific outer-membrane channel (chitoporin) for the efficient uptake of nutritional chitosugars that are externally produced through enzymic degradation of environmental host shell chitin. However, the principles behind the distinct substrate selectivity of chitoporins are unclear. Here, we employed black lipid membrane (BLM) electrophysiology, which handles the measurement of the flow of ionic current through porins in phospholipid bilayers for the assessment of porin conductivities, to investigate the pH dependency of chitosugar-chitoporin interactions for the bacterium's natural substrate chitohexaose and its deacetylated form, chitosan hexaose. We show that efficient passage of the N-acetylated chitohexaose through the chitoporin is facilitated by its strong affinity for the pore. In contrast, the deacetylated chitosan hexaose is impermeant; however, protonation of the C2 amino entities of chitosan hexaose allows it to be pulled through the channel in the presence of a transmembrane electric field. We concluded from this the crucial role of C2-substitution as the determining factor for chitoporin entry. A change from N-acetylamino- to amino-substitution effectively abolished the ability of approaching molecules to enter the chitoporin, with deacetylation leading to loss of the distinctive structural features of nanopore opening and pore access of chitosugars. These findings provide further understanding of the multistep pathway of chitin utilization by marine Vibrio bacteria and may guide the development of solid-state or genetically engineered biological nanopores for relevant technological applications.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Quitosana/metabolismo , Oligossacarídeos/metabolismo , Porinas/metabolismo , Vibrio/metabolismo , Acetilação , Proteínas da Membrana Bacteriana Externa/química , Quitosana/química , Modelos Moleculares , Oligossacarídeos/química , Porinas/química , Conformação Proteica , Vibrio/química
3.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 674-689, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950022

RESUMO

Vibrio species play a crucial role in maintaining the carbon and nitrogen balance between the oceans and the land through their ability to employ chitin as a sole source of energy. This study describes the structural basis for the action of the GH20 ß-N-acetylglucosaminidase (VhGlcNAcase) in chitin metabolism by Vibrio campbellii (formerly V. harveyi) strain ATCC BAA-1116. Crystal structures of wild-type VhGlcNAcase in the absence and presence of the sugar ligand, and of the unliganded D437A mutant, were determined. VhGlcNAcase contains three distinct domains: an N-terminal carbohydrate-binding domain linked to a small α+ß domain and a C-terminal (ß/α)8 catalytic domain. The active site of VhGlcNAcase has a narrow, shallow pocket that is suitable for accommodating a small chitooligosaccharide. VhGlcNAcase is a monomeric enzyme of 74 kDa, but its crystal structures show two molecules of enzyme per asymmetric unit, in which Gln16 at the dimeric interface of the first molecule partially blocks the entrance to the active site of the neighboring molecule. The GlcNAc unit observed in subsite -1 makes exclusive hydrogen bonds to the conserved residues Arg274, Tyr530, Asp532 and Glu584, while Trp487, Trp546, Trp582 and Trp505 form a hydrophobic wall around the -1 GlcNAc. The catalytic mutants D437A/N and E438A/Q exhibited a drastic loss of GlcNAcase activity, confirming the catalytic role of the acidic pair (Asp437-Glu438).


Assuntos
Acetilglucosaminidase/química , Quitina/metabolismo , Vibrio/enzimologia , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
4.
Biophys J ; 120(11): 2124-2137, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812846

RESUMO

VhChiP, a sugar-specific porin found on the outer membrane of Vibrio campbellii, is responsible for the transport of chitooligosaccharides, allowing the bacterium to thrive in aquatic environments using chitin as a nutrient. We previously showed that VhChiP is composed of three identical subunits, each containing a 16-stranded ß-barrel connected by eight extracellular loops and eight short periplasmic turns. This study is focused on the specific roles of three prominent extracellular loops of VhChiP-L2, L3, and L8. The deletion of L2 completely disrupted the L2-L2 interactions, thus destabilizing the protein trimers as well as the integrity of the secondary structure. The deletion of L3 caused a drastic loss in the binding affinity for sugar substrates because of the absence of a cluster of key amino acid residues that form the affinity sites. The removal of L8 induced pronounced gating, which is highly responsive to elevated potentials. Our data provide further information on the important roles of the three prominent loops of VhChiP: loop L2 maintains the trimeric structure and the integrity of secondary structure, loop L3 controls the binding affinity for sugar substrates, and loop L8 retains the stably open state of the channel.


Assuntos
Proteínas da Membrana Bacteriana Externa , Vibrio , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Porinas/genética , Porinas/metabolismo , Estrutura Secundária de Proteína , Vibrio/metabolismo
5.
Int J Biol Macromol ; 164: 3508-3522, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858106

RESUMO

Vibrio campbellii (formerly Vibrio harveyi) is a bacterial pathogen that causes vibriosis, which devastates fisheries and aquaculture worldwide. V. campbellii expresses chitinolytic enzymes and chitin binding/transport proteins, which serve as excellent targets for antimicrobial agent development. We previously characterized VhChiP, a chitooligosaccharide-specific porin from the outer membrane of V. campbellii BAA-1116. This study employed far-UV circular dichroism and tryptophan fluorescence spectroscopy, together with single channel electrophysiology to demonstrate that the strong binding of chitoligosaccharides enhanced thermal stability of VhChiP. The alanine substitution of Trp136 at the center of the affinity sites caused a marked decrease in the binding affinity and decreased the thermal stability of VhChiP. Tryptophan fluorescence titrations over a range of temperatures showed greater free-energy changes on ligand binding (ΔG°binding) with increasing chain length of the chitooligosaccharides. Our findings suggest the possibility of designing stable channel-blockers, using sugar-based analogs that serve as antimicrobial agents, active against Vibrio infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Porinas/química , Vibrio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Desenvolvimento de Medicamentos , Expressão Gênica , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Porinas/antagonistas & inibidores , Porinas/genética , Ligação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica , Vibrio/efeitos dos fármacos , Vibrio/genética , Vibrio/metabolismo , Vibrioses/tratamento farmacológico , Vibrioses/microbiologia
6.
J Biol Chem ; 295(28): 9421-9432, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32409576

RESUMO

Vibrio cholerae is a Gram-negative, facultative anaerobic bacterial species that causes serious disease and can grow on various carbon sources, including chitin polysaccharides. In saltwater, its attachment to chitin surfaces not only serves as the initial step of nutrient recruitment but is also a crucial mechanism underlying cholera epidemics. In this study, we report the first characterization of a chitooligosaccharide-specific chitoporin, VcChiP, from the cell envelope of the V. cholerae type strain O1. We modeled the structure of VcChiP, revealing a trimeric cylinder that forms single channels in phospholipid bilayers. The membrane-reconstituted VcChiP channel was highly dynamic and voltage induced. Substate openings O1', O2', and O3', between the fully open states O1, O2, and O3, were polarity selective, with nonohmic conductance profiles. Results of liposome-swelling assays suggested that VcChiP can transport monosaccharides, as well as chitooligosaccharides, but not other oligosaccharides. Of note, an outer-membrane porin (omp)-deficient strain of Escherichia coli expressing heterologous VcChiP could grow on M9 minimal medium supplemented with small chitooligosaccharides. These results support a crucial role of chitoporin in the adaptive survival of bacteria on chitinous nutrients. Our findings also suggest a promising means of vaccine development based on surface-exposed outer-membrane proteins and the design of novel anticholera agents based on chitooligosaccharide-mimicking analogs.


Assuntos
Proteínas da Membrana Bacteriana Externa , Viabilidade Microbiana , Porinas , Vibrio cholerae , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Quitina/análogos & derivados , Quitina/química , Quitina/genética , Quitina/metabolismo , Quitosana , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Oligossacarídeos , Porinas/química , Porinas/genética , Porinas/metabolismo , Vibrio cholerae/química , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
7.
FEBS J ; 287(22): 4982-4995, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32145141

RESUMO

Vibrio spp. play a vital role in the recycling of chitin in oceans, but several Vibrio strains are highly infectious to aquatic animals and humans. These bacteria require chitin for growth; thus, potent inhibitors of chitin-degrading enzymes could serve as candidate drugs against Vibrio infections. This study examined NAG-thiazoline (NGT)-mediated inhibition of a recombinantly expressed GH20 ß-N-acetylglucosaminidase, namely VhGlcNAcase from Vibrio campbellii (formerly V. harveyi) ATCC BAA-1116. NGT strongly inhibited VhGlcNAcase with an IC50 of 11.9 ± 1.0 µm and Ki 62 ± 3 µm, respectively. NGT was also found to completely inhibit the growth of V. campbellii strain 650 with an minimal inhibitory concentration value of 0.5 µm. ITC data analysis showed direct binding of NGT to VhGlcNAcase with a Kd of 32 ± 1.2 µm. The observed ΔG°binding of -7.56 kcal·mol-1 is the result of a large negative enthalpy change and a small positive entropic compensation, suggesting that NGT binding is enthalpy-driven. The structural complex shows that NGT fully occupies the substrate-binding pocket of VhGlcNAcase and makes an exclusive hydrogen bond network, as well as hydrophobic interactions with the conserved residues around the -1 subsite. Our results strongly suggest that NGT could serve as an excellent scaffold for further development of antimicrobial agents against Vibrio infections. DATABASE: Structural data are available in PDB database under the accession number 6K35.


Assuntos
Acetilglucosamina/análogos & derivados , Acetilglucosaminidase/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Tiazóis/farmacologia , Vibrio/enzimologia , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Acetilglucosaminidase/química , Acetilglucosaminidase/metabolismo , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Oligossacarídeos/metabolismo , Domínios Proteicos , Especificidade por Substrato , Termodinâmica , Tiazóis/química , Vibrio/efeitos dos fármacos , Vibrio/genética , Vibrio/crescimento & desenvolvimento
8.
Int J Biol Macromol ; 142: 503-512, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593714

RESUMO

ß-N-acetylglucosaminidases (GlcNAcases) play a crucial role in the metabolism of glycan-conjugated proteins/lipids in humans. Elevated levels of serum GlcNAcases have been associated with certain types of cancer, and GlcNAcases therefore serve as drug targets. Here, we employed virtual screening to identify two novel GlcNAcase inhibitors from the National Cancer Institute (NCI) Drug Library using a bacterial GH-20 GlcNAcase (VhGlcNAcase) as a search model. NSC73735 was shown to be most potent with IC50 of 12.7 ±â€¯1.2 µM, agreeing with Kd of 0.94 ±â€¯0.2 µM obtained by ITC. Molecular docking refinement indicated that Trp582 the key residue that interacted with all the inhibitor molecules. Docking NSC7373 into the active site of human O-GlcNAcase (hOGA) yielded reasonably good fit with the estimated Kd of 44.7 µM, indicating its possibility to be a true binding partner. NSC73735 was shown to significantly suppress both cell growth and GlcNAcase activity of five cancer cell lines (U937, THP-1, MCF-7, HepG2 and PC-3) that express endogenous GlcNAcases. The cell cytotoxicity assay indicated the inherent effects of the lead compound on GlcNAcase expression with cancer cell proliferation, and therefore this novel GlcNAcase inhibitor may serve as a virtuous candidate for further development of highly potent anti-tumor agents.


Assuntos
Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Acetilglucosaminidase/química , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Conformação Proteica , Interface Usuário-Computador
9.
Nat Commun ; 9(1): 220, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335469

RESUMO

Chitin, an insoluble polymer of N-acetylglucosamine, is one of the most abundant biopolymers on Earth. By degrading chitin, chitinolytic bacteria such as Vibrio harveyi are critical for chitin recycling and maintenance of carbon and nitrogen cycles in the world's oceans. A decisive step in chitin degradation is the uptake of chito-oligosaccharides by an outer membrane protein channel named chitoporin (ChiP). Here, we report X-ray crystal structures of ChiP from V. harveyi in the presence and absence of chito-oligosaccharides. Structures without bound sugar reveal a trimeric assembly with an unprecedented closing of the transport pore by the N-terminus of a neighboring subunit. Substrate binding ejects the pore plug to open the transport channel. Together with molecular dynamics simulations, electrophysiology and in vitro transport assays our data provide an explanation for the exceptional affinity of ChiP for chito-oligosaccharides and point to an important role of the N-terminal gate in substrate transport.


Assuntos
Carbono/metabolismo , Quitina/metabolismo , Nitrogênio/metabolismo , Vibrio/metabolismo , Acetilglucosamina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Ciclo do Carbono , Cristalografia por Raios X , Modelos Moleculares , Ciclo do Nitrogênio , Oceanos e Mares , Oligossacarídeos/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Conformação Proteica , Água do Mar/química , Água do Mar/microbiologia , Vibrio/genética
10.
PLoS One ; 9(5): e95918, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788109

RESUMO

BACKGROUND: Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. PRINCIPAL FINDINGS: Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the 'greasiness' of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. CONCLUSION/SIGNIFICANCE: Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects the permeability of the BpsOmp38 channel to neutral sugars and antimicrobial agents.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Cefalosporinas/farmacologia , Porinas/genética , Tienamicinas/farmacologia , Resistência beta-Lactâmica/genética , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Escherichia coli/genética , Humanos , Melioidose/microbiologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Permeabilidade , Porinas/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA