Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nucleic Acids Res ; 50(18): 10449-10468, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36156150

RESUMO

Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , MicroRNAs/genética , Prognóstico , Uracila/metabolismo , Uracila-DNA Glicosidase/genética
2.
Commun Biol ; 3(1): 153, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242091

RESUMO

Somatic copy number alterations are a frequent sign of genome instability in cancer. A precise characterization of the genome architecture would reveal underlying instability mechanisms and provide an instrument for outcome prediction and treatment guidance. Here we show that the local spatial behavior of copy number profiles conveys important information about this architecture. Six filters were defined to characterize regional traits in copy number profiles, and the resulting Copy Aberration Regional Mapping Analysis (CARMA) algorithm was applied to tumors in four breast cancer cohorts (n = 2919). The derived motifs represent a layer of information that complements established molecular classifications of breast cancer. A score reflecting presence or absence of motifs provided a highly significant independent prognostic predictor. Results were consistent between cohorts. The nonsite-specific occurrence of the detected patterns suggests that CARMA captures underlying replication and repair defects and could have a future potential in treatment stratification.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Instabilidade Genômica , Algoritmos , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Tomada de Decisão Clínica , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Risco , Transcriptoma
3.
Nat Commun ; 10(1): 1600, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962452

RESUMO

In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Mapas de Interação de Proteínas , Proteoma/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/imunologia , Variações do Número de Cópias de DNA , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteogenômica/métodos , Proteoma/genética , Proteoma/imunologia , RNA Mensageiro/metabolismo
5.
Methods Mol Biol ; 1711: 55-81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344885

RESUMO

A variety of molecular techniques can be used in order to unravel the molecular composition of cells. In particular, the microarray technology has been used to identify novel biomarkers that may be useful in the diagnosis, prognosis, or treatment of cancer. The microarray technology is ideal for biomarker discovery as it allows for the screening of a large number of molecules at once. In this review, we focus on microRNAs (miRNAs) which are key molecules in cells and regulate gene expression post-transcriptionally. miRNAs are small, single-stranded RNA molecules that bind to complementary mRNAs. Binding of miRNAs to mRNAs leads either to degradation, or translational inhibition of the target mRNA. Roughly one third of all the mRNAs are postulated to be regulated by miRNAs. miRNAs are known to be deregulated in different types of cancer, including breast cancer, and it has been demonstrated that deregulation of several miRNAs can be used as biological markers in cancer. miRNA expression can for example discriminate between normal, benign and malignant breast tissue, and between different breast cancer subtypes.In the post-genomic era, an important task of molecular biology is to understand gene regulation in the context of biological networks. Because miRNAs have such a pronounced role in cells, it is pivotal to understand the mechanisms that underlie their control, and to identify how miRNAs influence cancer development and progression.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Animais , Biomarcadores Tumorais/genética , Mama/metabolismo , Mama/fisiopatologia , Neoplasias da Mama/fisiopatologia , Feminino , Genômica/métodos , Humanos , Biologia de Sistemas/métodos
6.
EMBO Mol Med ; 8(9): 1052-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27485121

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as regulators of gene expression in pathogenesis, including cancer. Recently, lncRNAs have been implicated in progression of specific subtypes of breast cancer. One aggressive, basal-like subtype associates with increased EGFR signaling, while another, the HER2-enriched subtype, engages a kin of EGFR Based on the premise that EGFR-regulated lncRNAs might control the aggressiveness of basal-like tumors, we identified multiple EGFR-inducible lncRNAs in basal-like normal cells and overlaid them with the transcriptomes of over 3,000 breast cancer patients. This led to the identification of 11 prognostic lncRNAs. Functional analyses of this group uncovered LINC01089 (here renamed LncRNA Inhibiting Metastasis; LIMT), a highly conserved lncRNA, which is depleted in basal-like and in HER2-positive tumors, and the low expression of which predicts poor patient prognosis. Interestingly, EGF rapidly downregulates LIMT expression by enhancing histone deacetylation at the respective promoter. We also find that LIMT inhibits extracellular matrix invasion of mammary cells in vitro and tumor metastasis in vivo In conclusion, lncRNAs dynamically regulated by growth factors might act as novel drivers of cancer progression and serve as prognostic biomarkers.


Assuntos
Neoplasias da Mama/patologia , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/biossíntese , Feminino , Humanos
7.
Cancer Metab ; 4: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27350877

RESUMO

BACKGROUND: The heterogeneous biology of breast cancer leads to high diversity in prognosis and response to treatment, even for patients with similar clinical diagnosis, histology, and stage of disease. Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment stratification. In this study, we have merged metabolite, protein, and gene expression data from breast cancer patients to examine the heterogeneity at a molecular level. METHODS: The study included primary tumor samples from 228 non-treated breast cancer patients. High-resolution magic-angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic clusters (Mc1, Mc2, and Mc3). The clusters were further combined with gene and protein expression data. RESULTS: Our result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest levels of glucose, and Mc3 had the highest levels of lactate and alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution of protein subtypes classified by the expression of breast cancer-related proteins. Genes related to collagens and extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity. CONCLUSIONS: Three naturally occurring metabolic clusters of breast cancer were detected among primary tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer-related protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analyses of metabolic activity combined with gene and protein expression provide new information about the heterogeneity of breast tumors and, importantly, the metabolic differences infer that the clusters may be susceptible to different metabolically targeted drugs.

8.
Nature ; 534(7605): 47-54, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27135926

RESUMO

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Assuntos
Neoplasias da Mama/genética , Genoma Humano/genética , Mutação/genética , Estudos de Coortes , Análise Mutacional de DNA , Replicação do DNA/genética , DNA de Neoplasias/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genômica , Humanos , Masculino , Mutagênese , Taxa de Mutação , Oncogenes/genética , Reparo de DNA por Recombinação/genética
9.
Int J Cancer ; 139(5): 1117-28, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27082076

RESUMO

Robust markers of invasiveness may help reduce the overtreatment of in situ carcinomas. Breast cancer is a heterogeneous disease and biological mechanisms for carcinogenesis vary between subtypes. Stratification by subtype is therefore necessary to identify relevant and robust signatures of invasive disease. We have identified microRNA (miRNA) alterations during breast cancer progression in two separate datasets and used stratification and external validation to strengthen the findings. We analyzed two separate datasets (METABRIC and AHUS) consisting of a total of 186 normal breast tissue samples, 18 ductal carcinoma in situ (DCIS) and 1,338 invasive breast carcinomas. Validation in a separate dataset and stratification by molecular subtypes based on immunohistochemistry, PAM50 and integrated cluster classifications were performed. We propose subtype-specific miRNA signatures of invasive carcinoma and a validated signature of DCIS. miRNAs included in the invasive signatures include downregulation of miR-139-5p in aggressive subtypes and upregulation of miR-29c-5p expression in the luminal subtypes. No miRNAs were differentially expressed in the transition from DCIS to invasive carcinomas on the whole, indicating the need for subtype stratification. A total of 27 miRNAs were included in our proposed DCIS signature. Significant alterations of expression included upregulation of miR-21-5p and the miR-200 family and downregulation of let-7 family members in DCIS samples. The signatures proposed here can form the basis for studies exploring DCIS samples with increased invasive potential and serum biomarkers for in situ and invasive breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Transcriptoma , Biomarcadores Tumorais , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Mapeamento Cromossômico , Análise por Conglomerados , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Família Multigênica , Invasividade Neoplásica , Reprodutibilidade dos Testes
10.
Nat Methods ; 12(3): 211-4, 3 p following 214, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581801

RESUMO

We present SEEK (search-based exploration of expression compendia; http://seek.princeton.edu/), a query-based search engine for very large transcriptomic data collections, including thousands of human data sets from many different microarray and high-throughput sequencing platforms. SEEK uses a query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify genes, pathways and processes co-regulated with the query. SEEK provides multigene query searching with iterative metadata-based search refinement and extensive visualization-based analysis options.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Ferramenta de Busca , Transcriptoma , Algoritmos , Bases de Dados Genéticas , Ontologia Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , RNA
11.
Cancer Cell ; 26(6): 863-879, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490449

RESUMO

Small noncoding miRNAs represent underexplored targets of genomic aberrations and emerging therapeutic targets. The 3q26.2 amplicon is among the most frequent genomic aberrations in multiple cancer lineages including ovarian and breast cancers. We demonstrate that hsa-miR-569 (hereafter designated as miR569), which is overexpressed in a subset of ovarian and breast cancers, at least in part due to the 3q26.2 amplicon, alters cell survival and proliferation. Downregulation of TP53INP1 expression by miR569 is required for the effects of miR569 on survival and proliferation. Targeting miR569 sensitizes ovarian and breast cancer cells overexpressing miR569 to cisplatin by increasing cell death both in vitro and in vivo. Thus targeting miR569 could potentially benefit patients with the 3q26.2 amplicon and subsequent miR569 elevation.


Assuntos
Neoplasias da Mama/genética , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , MicroRNAs/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos Par 3 , Cisplatino/farmacologia , Feminino , Amplificação de Genes , Duplicação Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Experimentais , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia
12.
Mol Oncol ; 7(3): 704-18, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23562353

RESUMO

For a panel of cancer related proteins, the aim was to shed light on which molecular level the expression of each protein was mainly regulated in breast tumors, and to investigate whether differences in regulation were reflected in different molecular subtypes. DNA, mRNA and protein lysates from 251 breast tumor specimens were analyzed using appropriate microarray technologies. Data from all three levels were available for 52 proteins selected for their known involvement in cancer, primarily through the PI3K/Akt pathway. For every protein, in cis Spearman rank correlations between the three molecular levels were calculated across all samples and within each intrinsic gene expression subtype, enabling 63 comparisons altogether due to multiple gene probes matching to single proteins. Subtype-specific relationships between the three molecular levels were studied by calculating the variance of subtype-specific correlation and differences between overall and average subtype-specific correlation. The findings were validated in an external dataset comprising 703 breast tumor specimens. The proteins were sorted into four groups based on the calculated rank correlation values between the three molecular levels. Group A consisted of eight proteins with significant correlation between DNA copy number levels and mRNA expression, and between mRNA expression and protein expression (Bonferroni adjusted p < 0.05). Group B consisted of 14 proteins with significant correlation between mRNA expression and protein expression. Group C consisted of 15 proteins with significant correlation between copy number levels and mRNA expression. For the remaining 25 proteins (group D), no significant correlations was observed. Stratification of tumors according to intrinsic subtype enabled identification of positive correlations between copy number levels, mRNA and protein expression that were undetectable when considering the entire sample set. Protein pairings that either demonstrated high variance in correlation values between subtypes, or between subtypes and the total dataset were studied in particular. The protein expression of cleaved caspase 7 was most highly expressed, and correlated highest to CASP7 gene expression within the basal-like subtype, accompanied by the lowest amounts of hsa-miR-29c. Luminal A-like subtype demonstrated highest amounts of hsa-miR-29c (a miRNA with a putative target sequence in CASP7 mRNA), low expression of cleaved caspase 7 and low correlation to CASP7 gene expression. Such pattern might be an indication of hsa-miR-29c miRNA functioning as a repressor of translation of CASP7 within the luminal-A subtype. Across the entire cohort no correlation was found between CCNB1 copy number and gene expression. However, within most gene intrinsic subtypes, mRNA and protein expression of cyclin B1 was found positively correlated to copy number data, suggesting that copy number can affect the overall expression of this protein. Aberrations of cyclin B1 copy number also identified patients with reduced overall survival within each subtype. Based on correlation between the three molecular levels, genes and their products could be sorted into four groups for which the expression was likely to be regulated at different molecular levels. Further stratification suggested subtype-specific regulation that was not evident across the entire sample set.


Assuntos
Neoplasias da Mama/genética , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , Mama/metabolismo , Neoplasias da Mama/diagnóstico , Caspase 7/genética , Ciclina B1/genética , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Prognóstico , Análise de Sobrevida
13.
PLoS One ; 6(2): e16915, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21364938

RESUMO

INTRODUCTION: Few studies have performed expression profiling of both miRNA and mRNA from the same primary breast carcinomas. In this study we present and analyze data derived from expression profiling of 799 miRNAs in 101 primary human breast tumors, along with genome-wide mRNA profiles and extensive clinical information. METHODS: We investigate the relationship between these molecular components, in terms of their correlation with each other and with clinical characteristics. We use a systems biology approach to examine the correlative relationship between miRNA and mRNAs using statistical enrichment methods. RESULTS: We identify statistical significant differential expression of miRNAs between molecular intrinsic subtypes, and between samples with different levels of proliferation. Specifically, we point to miRNAs significantly associated with TP53 and ER status. We also show that several cellular processes, such as proliferation, cell adhesion and immune response, are strongly associated with certain miRNAs. We validate the role of miRNAs in regulating proliferation using high-throughput lysate-microarrays on cell lines and point to potential drivers of this process. CONCLUSION: This study provides a comprehensive dataset as well as methods and system-level results that jointly form a basis for further work on understanding the role of miRNA in primary breast cancer.


Assuntos
Neoplasias da Mama/genética , Carcinoma/genética , MicroRNAs/análise , MicroRNAs/fisiologia , RNA Mensageiro/análise , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/classificação , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Análise em Microsséries , Modelos Biológicos , Mutação/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Integração de Sistemas , Proteína Supressora de Tumor p53/genética , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA