Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 15(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432172

RESUMO

BACKGROUND: Red beetroot is known to be a health-promoting food. However, little attention is placed on intestinal bioactive compound absorption. The aim of the study was to assess the urinary red beetroot juice (RBJ) intake biomarkers and possible differences in RBJ's micronutrient absorption at rest or after physical exercise. METHODS: This is a three-armed, single-blind study, involving seven healthy volunteers which were randomly divided into three groups and alternatively assigned to three experimental sessions: RBJ intake at rest, RBJ intake with physical activity, and placebo intake with physical activity. For each session, urine samples were collected before and 120, 180, and 240 min after the intake of RBJ or placebo. The same sampling times were employed for the experimental session at rest. The RBJ metabolic composition was also characterized to identify the urinary biomarkers derived from the intake. RESULTS: 4-methylpyridine-2-carboxylic acid, dopamine-3-O-sulfate, glutamine, and 3-hydroxyisobutyrate were identified as RBJ intake biomarkers. Physical activity significantly increased only the dopamine-3-O-sulfate excretion 120 min after RBJ intake. CONCLUSIONS: Urinary dopamine-3-O-sulfate is related to RBJ dopamine content, while 4-methylpyridine-2-carboxylic acid is a betanin or betalamic acid catabolite. The different excretions of these metabolites following physical activity suggest a possible effect on the RBJ uptake depending on different transport processes through the mucosa, namely diffusion-mediated transport for dopamine and saturable transcellular transport for betalamic acid derivatives. These results open new perspectives in improving the absorption of natural bioactive molecules through physical activity.


Assuntos
Dopamina , Exercício Físico , Humanos , Antioxidantes , Ácidos Carboxílicos , Método Simples-Cego , Sulfatos
2.
Microorganisms ; 11(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110510

RESUMO

Lactic acid bacteria (LAB) share and provide several beneficial effects on human health, such as the release of bioactive metabolites, pathogen competition, and immune stimulation. The two major reservoirs of probiotic microorganisms are the human gastro-intestinal tract and fermented dairy products. However, other sources, such as plant-based foods, represent important alternatives thanks to their large distribution and nutritive value. Here, the probiotic potential of autochthonous Lactiplantibacillus plantarum PFA2018AU, isolated from carrots harvested in Fucino highland, Abruzzo (Italy), was investigated through in vitro and in vivo approaches. The strain was sent to the biobank of Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna in Italy for the purpose of patent procedures under the Budapest Treaty. The isolate showed high survival capability under in vitro simulated gastro-intestinal conditions, antibiotic susceptibility, hydrophobicity, aggregation, and the ability to inhibit the in vitro growth of Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus pathogens. Caenorhabditis elegans was used as the in vivo model in order to analyse prolongevity and anti-ageing effects. L. plantarum PFA2018AU significantly colonised the gut of the worms, extended their lifespan, and stimulated their innate immunity. Overall, these results showed that autochthonous LAB from vegetables, such as carrots, have functional features that can be considered novel probiotic candidates.

3.
Microorganisms ; 9(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835416

RESUMO

Lactic acid bacteria (LAB) share several beneficial effects on human organisms, such as bioactive metabolites' release, pathogens' competition and immune stimulation. This study aimed at determining the probiotic potential of autochthonous lactic acid bacteria isolated from carrots. In particular, the work reported the characterization at the species level of four LAB strains deriving from carrots harvested in Fucino highland, Abruzzo (Italy). Ribosomal 16S DNA analysis allowed identification of three strains belonging to Leuconostoc mesenteroides and a Weissella soli strain. In vitro and in vivo assays were performed to investigate the probiotic potential of the different isolates. Among them, L. mesenteroides C2 and L. mesenteroides C7 showed high survival percentages under in vitro simulated gastro-intestinal conditions, antibiotic susceptibly and the ability to inhibit in vitro growth against Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus pathogens. In parallel, the simple model Caenorhabditis elegans was used for in vivo screenings. L. mesenteroides C2 and L. mesenteroides C7 strains significantly induced pro-longevity effects, protection from pathogens' infection and innate immunity stimulation. Overall, these results showed that some autochthonous LAB from vegetables such as carrots have functional features to be considered as novel probiotic candidates.

4.
Foods ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34441664

RESUMO

Red beetroot (RB) is a well-known health-promoting food consumed worldwide. RB is commonly used in food processing and manufacturing thanks to the high content of components that can also be employed as natural coloring agents. These bioactive molecules vary their concentration depending on beetroot seasonality, harvest time and climate conditions. The first objective of this study was to evaluate the variation of the RB phytochemical profile related to the root development during three different harvest times, using an 1H-NMR-based metabolomic approach. Changes of carbohydrates and secondary metabolite concentrations were observed from July to September. Secondly, we compared the metabolic profiles of the final processed beet juices in three different production years to observe the effect of climate conditions on the RB's final product metabotype. A PCA analysis performed on juice extracts showed that production years 2016 and 2017 were characterized by a high content of choline and betaine, while 2018 by a high content of amino acids and dopamine and a low content of inorganic nitrates. This study suggests that the harvest time and roots growth conditions could be used to modulate the RB phytochemical profile, according to the final requirements of use, food or coloring agent source.

5.
J Agric Food Chem ; 64(25): 5284-91, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281439

RESUMO

Carrots are usually consumed in their native form or processed into many different products. Carrot juice is a popular beverage consumed throughout the world and is attracting increasing attention due to its nutritional value, being a natural source of bioactive compounds. Ready-to-drink carrot juices produced in the same factory were analyzed by (1)H nuclear magnetic resonance (NMR) spectroscopy. The juices were made from carrot roots of the same cultivar grown in three different geographical areas in Italy. More than 30 compounds have been identified and quantified, and the data was subjected to univariate ANOVA and multivariate analyses. Clear geographical-dependent clustering was observed, and the metabolic profiles were related to the different pedoclimatic conditions. The proposed phytoprofiling approach could be employed on an industrial scale to evaluate finished products involving different sites of supply of the raw material, thus improving both the quality and uniformity of the juices.


Assuntos
Daucus carota/química , Sucos de Frutas e Vegetais/análise , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Manipulação de Alimentos , Itália , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA