Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Med Chem ; 66(4): 2477-2497, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36780426

RESUMO

Phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) are a new family of antimitotic prodrugs bioactivated in breast cancer cells expressing CYP1A1. In this study, we report that the 14C-labeled prototypical PAIB-SO [14C]CEU-818 and its antimitotic counterpart [14C]CEU-602 are distributed in whole mouse body and they show a short half-life in mice. To circumvent this limitation, we evaluated the effect of the homologation of the alkyl side chain of the imidazolidin-2-one moiety of PAIB-SOs. Our studies evidence that PAIB-SOs bearing an n-pentyl side chain exhibit antiproliferative activity in the nanomolar-to-low-micromolar range and a high selectivity toward CYP1A1-positive breast cancer cells. Moreover, the most potent n-pentyl PAIB-SOs were significantly more stable toward rodent liver microsomes. In addition, PAIB-SOs 10 and 14 show significant antitumor activity and low toxicity in chorioallantoic membrane (CAM) assay. Our study confirms that homologation is a suitable approach to improve the rodent hepatic stability of PAIB-SOs.


Assuntos
Antimitóticos , Neoplasias , Pró-Fármacos , Camundongos , Animais , Antimitóticos/química , Pró-Fármacos/química , Citocromo P-450 CYP1A1 , Roedores , Microssomos Hepáticos , Benzenossulfonatos/química
2.
Front Med (Lausanne) ; 9: 993151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314021

RESUMO

Background: 99mTc-NTP 15-5 is a SPECT radiotracer targeting proteoglycans (PG), components of the cartilaginous extracellular matrix. Imaging of PGs would be useful for the early detection of cartilage disorders (osteoarthritis, arthritis and chondrosarcoma, Aromatase Inhibitor associated arthralgia (AIA) in breast cancer), and the follow-up of patients under treatment. According to preclinical study results, 99mTc-NTP 15-5, is a good candidate for a specific functional molecular imaging of joints. We intend to initiate a first in-human study to confirm and quantify 99mTc-NTP 15-5 uptake in healthy joints. Methods: As the clinical development of this radiotracer would be oriented toward the functional imaging of joint pathologies, we have chosen to include patients with healthy joints (unilateral osteoarthritis of the knee or breast cancer with indication of AI treatment). This phase I study will be an open-label, multicenter, dose-escalation trial of a radiopharmaceutical orientation to determine the recommended level of activity of 99mTc-NTP 15-5 to obtain the best joint tracer contrasts on images, without dose limiting toxicity (DLT). The secondary objectives will include the study of the pharmacology, biodistribution (using planar whole body and SPECT-CT acquisitions), toxicity, and dosimetry of this radiotracer. The dose escalation with 3 activity levels (5, 10, and 15 MBq/kg), will be conditioned by the absence at the previous level of DLT and of a visualized tracer accumulation on more than 80% of healthy joints as observed on scintigraphy performed at ≤ 2 h post-injection. Discussion: This first in-human phase I trial will be proof-of-concept of the relevance of 99mTc-NTP 15-5 as a cartilage tracer, with the determination of the optimal methodology (dose and acquisition time) to obtain the best contrast to provide a functional image of joints with SPECT-CT. Trial registration number: Clinicaltrials.gov: NCT04481230. Identifier in French National Agency for the Safety of Medicines and Health Products (ANSM): N°EudraCT 2020-000495-37.

3.
Sci Rep ; 12(1): 8146, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581224

RESUMO

With the emergence of disease modifying osteoarthritis drugs (DMOAD), imaging methods to quantitatively demonstrate their efficacy and to monitor osteoarthritis progression at the functional level are urgently needed. Our group showed that articular cartilage can be quantitatively assessed in nuclear medicine imaging by our radiotracer 99mTc-NTP 15-5 targeting cartilage proteoglycans. In this work, surgically induced DMM mice were treated with sprifermin or saline. We investigated cartilage remodelling in the mice knees by 99mTc-NTP 15-5 SPECT-CT imaging over 24 weeks after surgery, as wells as proteoglycan biochemical assays. OA alterations were scored by histology according to OARSI guidelines. A specific accumulation of 99mTc-NTP 15-5 in cartilage joints was evidenced in vivo by SPECT-CT imaging as early as 30 min post-iv injection. In DMM, 99mTc-NTP 15-5 accumulation in cartilage within the operated joints, relative to contralateral ones, was observed to initially increase then decrease as pathology progressed. Under sprifermin, 99mTc-NTP 15-5 uptake in pathological knees was significantly increased compared to controls, at 7-, 12- and 24-weeks, and consistent with proteoglycan increase measured 5 weeks post-surgery, as a sign of cartilage matrix remodelling. Our work highlights the potential of 99mTc-NTP 15-5 as an imaging-based companion to monitor cartilage remodelling in OA and DMOAD response.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos , Compostos Heterocíclicos com 1 Anel , Indicadores e Reagentes , Camundongos , Osteoartrite/diagnóstico por imagem , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Proteoglicanas , Compostos de Amônio Quaternário
4.
BMC Cancer ; 22(1): 417, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428211

RESUMO

BACKGROUND: Benzamide-based radioligands targeting melanin were first developed for imaging melanoma and then for therapeutic purpose with targeted radionuclide therapy (TRT). [131I]ICF01012 presents a highly favorable pharmacokinetics profile in vivo for therapy. Tumour growth reduction and increase survival have been established in preclinical models of melanoma. According the these preclinical results, we initiate a first-in-human study aimed to determine the recommended dose of [131I]ICF01012 to administer for the treatment of patients with pigmented metastatic melanoma. METHODS: The MELRIV-1 trial is an open-label, multicentric, dose-escalation phase I trial. The study is divided in 2 steps, a selection part with an IV injection of low activity of [131I]ICF01012 (185 MBq at D0) to select patients who might benefit from [131I]ICF01012 TRT in therapeutic part, i.e. patient presenting at least one tumour lesion with [131I]ICF01012 uptake and an acceptable personalized dosimetry to critical organs (liver, kidney, lung and retina). According to dose escalation scheme driven by a Continual Reassessment Method (CRM) design, a single therapeutic injection of 800 MBq/m2, or 1600 MBq/m2, or 2700 MBq/m2 or 4000 MBq/m2 of [131I]ICF01012 will be administered at D11 (± 4 days). The primary endpoint is the recommended therapeutic dose of [131I]ICF01012, with DLT defined as any grade 3-4 NCI-CT toxicity during the 6 weeks following therapeutic dose. Safety, pharmacokinetic, biodistribution (using planar whole body and SPECT-CT acquisitions), sensitivity / specificity of [131I]ICF01012, and therapeutic efficacy will be assessed as secondary objectives. Patients who received therapeutic injection will be followed until 3 months after TRT. Since 6 to 18 patients are needed for the therapeutic part, up to 36 patients will be enrolled in the selection part. DISCUSSION: This study is a first-in-human trial evaluating the [131I]ICF01012 TRT in metastatic malignant melanomas with a diagnostic dose of the [131I]ICF01012 to select the patients who may benefit from a therapeutic dose of [131I]ICF01012, with at least one tumor lesion with [131I]ICF01012 uptake and an acceptable AD to healthy organ. TRIAL REGISTRATION: Clinicaltrials.gov : NCT03784625 . Registered on December 24, 2018. Identifier in French National Agency for the Safety of Medicines and Health Products (ANSM): N°EudraCT 2016-002444-17.


Assuntos
Melanoma , Segunda Neoplasia Primária , Ensaios Clínicos Fase I como Assunto , Humanos , Radioisótopos do Iodo/uso terapêutico , Melanoma/patologia , Estudos Multicêntricos como Assunto , Segunda Neoplasia Primária/tratamento farmacológico , Quinoxalinas , Distribuição Tecidual
5.
Pain ; 163(7): e837-e849, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561389

RESUMO

ABSTRACT: Rheumatoid arthritis is frequently associated with chronic pain that still remains difficult to treat. Targeting nerve growth factor (NGF) seems very effective to reduce pain in at least osteoarthritis and chronic low back pain but leads to some potential adverse events. Our aim was to better understand the involvement of the intracellular signalling pathways activated by NGF through its specific tyrosine kinase type A (TrkA) receptor in the pathophysiology of rheumatoid arthritis using the complete Freund adjuvant model in our knock-in TrkA/C mice. Our multimodal study demonstrated that knock-in TrkA/C mice exhibited a specific decrease of mechanical allodynia, weight-bearing deficit, peptidergic (CGRP+) and sympathetic (TH+) peripheral nerve sprouting in the joints, a reduction in osteoclast activity and bone resorption markers, and a decrease of CD68-positive cells in the joint with no apparent changes in joint inflammation compared with wild-type mice after arthritis. Finally, transcriptomic analysis shows several differences in dorsal root ganglion mRNA expression of putative mechanotransducers, such as acid-sensing ionic channel 3 and TWIK-related arachidonic acid activated K+ channel, as well as intracellular pathways, such as c-Jun, in the joint or dorsal root ganglia. These results suggest that TrkA-specific intracellular signalling pathways are specifically involved in mechanical hypersensitivity and bone alterations after arthritis using TrkA/C mice.


Assuntos
Artrite Reumatoide , Hiperalgesia , Receptor trkA , Transdução de Sinais , Animais , Artrite Reumatoide/complicações , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor trkA/genética
6.
Cancers (Basel) ; 13(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804655

RESUMO

PURPOSE: To assess the efficiency of targeted radionuclide therapy (TRT), alone or in combination with MEK inhibitors (MEKi), in melanomas harboring constitutive MAPK/ERK activation responsible for tumor radioresistance. METHODS: For TRT, we used a melanin radiotracer ([131I]ICF01012) currently in phase 1 clinical trial (NCT03784625). TRT alone or combined with MEKi was evaluated in three-dimensional melanoma spheroid models of human BRAFV600E SK-MEL-3, murine NRASQ61K 1007, and WT B16F10 melanomas. TRT in vivo biodistribution, dosimetry, efficiency, and molecular mechanisms were studied using the C57BL/6J-NRASQ61K 1007 syngeneic model. RESULTS: TRT cooperated with MEKi to increase apoptosis in both BRAF- and NRAS-mutant spheroids. NRASQ61K spheroids were highly radiosensitive towards [131I]ICF01012-TRT. In mice bearing NRASQ61K 1007 melanoma, [131I]ICF01012 induced a significant extended survival (92 vs. 44 days, p < 0.0001), associated with a 93-Gy tumor deposit, and reduced lymph-node metastases. Comparative transcriptomic analyses confirmed a decrease in mitosis, proliferation, and metastasis signatures in TRT-treated vs. control tumors and suggest that TRT acts through an increase in oxidation and inflammation and P53 activation. CONCLUSION: Our data suggest that [131I]ICF01012-TRT and MEKi combination could be of benefit for advanced pigmented BRAF-mutant melanoma care and that [131I]ICF01012 alone could constitute a new potential NRAS-mutant melanoma treatment.

7.
Magn Reson Med ; 86(2): 1008-1018, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33772858

RESUMO

PURPOSE: To evaluate the relevance of CEST frequency selectivity in simultaneous in vivo imaging of both of chondrosarcoma's phenotypic features, that are, its high proteoglycan concentration and its hypoxic core. METHODS: Swarm rat chondrosarcomas were implanted subcutaneously in NMRI nude mice. When tumors were measurable (12-16 days postoperative), mice were submitted to GAG, guanidyl, and APT CEST imaging. Proteoglycans and hypoxia were assessed in parallel by nuclear imaging exploiting 99m Tc-NTP 15-5 and 18 F-FMISO, respectively. Data were completed by ex vivo analysis of proteoglycans (histology and biochemical assay) and hypoxia (immunofluorescence). RESULTS: Quantitative analysis of GAG CEST evidenced a significantly higher signal for tumor tissues than for muscles. These results were in agreement with nuclear imaging and ex vivo data. For imaging tumoral pH in vivo, the CEST ratio of APT/guanidyl was studied. This highlighted an important heterogeneity inside the tumor. The hypoxic status was confirmed by 18 F-FMISO PET imaging and ex vivo immunofluorescence. CONCLUSION: CEST MRI simultaneously imaged both chondrosarcoma properties during a single experimental run and without the injection of any contrast agent. Both MR and nuclear imaging as well as ex vivo data were in agreement and showed that this chondrosarcoma animal model was rich in proteoglycans. However, even if tumors were lightly hypoxic at the stage studied, acidic areas were highlighted and mapped inside the tumor.


Assuntos
Condrossarcoma , Proteoglicanas , Animais , Condrossarcoma/diagnóstico por imagem , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Ratos
8.
Pharmacol Ther ; 224: 107829, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33662452

RESUMO

Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.


Assuntos
Benzamidas , Melanoma , Compostos Radiofarmacêuticos , Neoplasias Cutâneas , Humanos , Melaninas , Melanoma/diagnóstico por imagem , Melanoma/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/radioterapia
9.
Med Phys ; 48(1): 477-487, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217001

RESUMO

PURPOSE: This study aims to perform dosimetry for [99m Tc]NTP15-5 radiotracer used in imaging of articular cartilage in rabbits and humans. The radiotracer (covered by a world patent WO 01/00621 A1) has been proposed in the previous years for the study of cartilage in osteoarthritis diseases. A sensitive imaging approach is essential to quantify osteoarthritis progression and monitor response to new therapies. [99m Tc]NTP15-5 binds to cartilage proteoglycans whose decreased content is associated to a loss of biomedical function of cartilage. We have implemented the whole dosimetry study concerning this new radiotracer for rabbits and humans using the GATE Monte Carlo platform. MATERIALS AND METHODS: Absorbed doses to critical organs are determined using the MIRD formalism. Biodistribution data are obtained by organ sampling, measuring the activity in organs for three rabbits sacrificed at various times postadministration, and by SPECT/CT imaging at different times after injection. Most important sources are cartilages (in knees and intervertebral discs), due to localization together with the liver and kidneys due to excretion of the agent. S-values are calculated from rabbit's CT scan and human CT scan using the GATE v8.0 Monte Carlo platform. Cumulated activity in humans is extrapolated from animals using the %kg-dose/g method. Particular attention is given to dose calculation in bones, bone marrow and organs at risk. RESULTS: The dosimetry performed in rabbits shows highest absorbed doses for liver and kidneys with respectively 22.5 and 43.8 µGy per MBq of injected activity. In humans, we found absorbed doses for a maximum injected activity of 15 MBq/kg, that is, 1050 MBq for an adult of 70 kgs of 9.03 mGy for kidneys and 4.16 mGy for knee cartilages. Effective dose is 2.69 µSv/MBq. CONCLUSIONS: The dosimetry profile of [99m Tc]NTP15-5 in the context of preclinical trials is of major importance in order to make sure that organs at risk are not overexposed. GATE provides all the capability needed to calculate dose profiles for internal dosimetry. The extrapolation of the dose for a human model is a first step towards clinical trials.


Assuntos
Diagnóstico por Imagem , Radiometria , Animais , Cartilagem , Método de Monte Carlo , Coelhos , Distribuição Tecidual
10.
Cancer Immunol Immunother ; 69(10): 2075-2088, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447411

RESUMO

In line with the ongoing phase I trial (NCT03784625) dedicated to melanoma targeted radionuclide therapy (TRT), we explore the interplay between immune system and the melanin ligand [131I]ICF01012 alone or combined with immunotherapy (immune checkpoint inhibitors, ICI) in preclinical models. Here we demonstrate that [131I]ICF01012 induces immunogenic cell death, characterized by a significant increase in cell surface-exposed annexin A1 and calreticulin. Additionally, [131I]ICF01012 increases survival in immunocompetent mice, compared to immunocompromised (29 vs. 24 days, p = 0.0374). Flow cytometry and RT-qPCR analyses highlight that [131I]ICF01012 induces adaptive and innate immune cell recruitment in the tumor microenvironment. [131I]ICF01012 combination with ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1) has shown that tolerance is a main immune escape mechanism, whereas exhaustion is not present after TRT. Furthermore, [131I]ICF01012 and ICI combination has systematically resulted in a prolonged survival (p < 0.0001) compared to TRT alone. Specifically, [131I]ICF01012 + anti-CTLA-4 combination significantly increases survival compared to anti-CTLA-4 alone (41 vs. 26 days; p = 0.0011), without toxicity. This work represents the first global characterization of TRT-induced modifications of the antitumor immune response, demonstrating that tolerance is a main immune escape mechanism and that combining TRT and ICI is promising.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia/métodos , Radioisótopos do Iodo/uso terapêutico , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tolerância a Radiação/efeitos dos fármacos , Animais , Terapia Combinada , Melanoma Experimental/patologia , Camundongos , Células Tumorais Cultivadas , Proteína Tumoral 1 Controlada por Tradução
11.
Transl Oncol ; 12(11): 1442-1452, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31421458

RESUMO

Melanin-radiolabeled molecules for targeted radionuclide therapy (TRT) provide a promising approach for the treatment of pigmented melanoma. Among these radiolabeled molecules, the iodinated melanin-specific binding molecule ([131I]ICF01012) has shown a significant antitumor effect on metastatic melanoma preclinical models. We report herein that [131I]ICF01012 decreases the epithelial-mesenshymal transition-like (EMT-like) markers in both in vivo and in vitro three-dimensional (3D) melanoma spheroid models. [131I]ICF01012 spheroids irradiation resulted in reduced clonogenic capacity of all pigmented spheroids accompanied by increased protein expression levels of phosphorylated H2A.X, p53 and its downstream target p21. In addition, [131I]ICF01012 treatment leads to a significant increase of cell pigmentation as demonstrated in SK-MEL3 human xenograft model. We also showed that [131I]ICF01012 decreases the size and the number of melanoma lung colonies in the syngeneic murine B16BL6 in vivo model assessing its potentiality to kill circulating tumor cells. Taken together, these results indicate that [131I]ICF01012 reduces metastatic capacity of melanoma cells presumably through EMT-like reduction and cell differentiation induction.

12.
Med Phys ; 45(11): 5251-5262, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30179267

RESUMO

PURPOSE: Dosimetry for melanoma-targeted radionuclide therapy (TRT) with [131 I]ICF01012, a melanin ligand, has been previously evaluated in mice bearing melanomas. In this study, activity distribution and dosimetry are performed on healthy rabbits (Fauve de Bourgogne) using SPECT-CT imaging and ex vivo measurements. MATERIAL AND METHODS: Ex vivo biodistribution (i.v. injection: 370 kBq/kg, n = 2 per point) is performed on blood, eyes, brain, lung, liver, kidneys, heart, stomach, and spleen. Dosimetry calculations follow the MIRD formalism: S values are calculated from CT images using the GATE Monte Carlo platform and activity distributions are obtained from SPECT-CT imaging (i.v. injection: 37 MBq/kg n = 3 per point). A specific study is presented to assess dose to human retina. RESULTS: Time-integrated activities based on SPECT-CT are in accordance with ex vivo measurements except for spleen. Doses to liver and eyes are the most significant, with respectively, 6.38 ± 0.50 Gy/GBq (evaluated through SPECT-CT imaging) and 45.8 ± 7.9 Gy/GBq (evaluated through ex vivo measurements). Characterization of ocular [131 I]ICF01012 biodistribution in rabbits and quantification of melanin allowed to assess a dose of 3.07 ± 0.70 Gy/GBq to human retina. CONCLUSION: This study sustains [131 I]ICF01012 as a good candidate for melanoma TRT and open perspectives for personalized dosimetry calculation during phase I clinical transfer.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Melanoma/radioterapia , Quinoxalinas/uso terapêutico , Animais , Feminino , Humanos , Masculino , Melanoma/diagnóstico por imagem , Melanoma/metabolismo , Quinoxalinas/farmacocinética , Coelhos , Radiometria , Dosagem Radioterapêutica , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Software , Distribuição Tecidual , Proteína Tumoral 1 Controlada por Tradução
13.
Neoplasia ; 19(1): 17-27, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987437

RESUMO

PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET) imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT). TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS). RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33±2.11%ID/g and 4.87±0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT) of 2.9±0.5 days in treated vs 1.8±0.3 in controls] and a prolonged median survival (27 days vs 21 in controls). P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5±7.8 days vs 11.0±3.8 in controls) and improved median survival (111 days vs 74 in controls). CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.


Assuntos
Radioisótopos do Iodo , Melanoma/diagnóstico por imagem , Melanoma/patologia , Imagem Multimodal , Compostos Radiofarmacêuticos , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/metabolismo , Masculino , Melanoma/mortalidade , Melanoma/terapia , Melanoma Experimental , Camundongos , Metástase Neoplásica , Tomografia por Emissão de Pósitrons , Radioquímica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , Proteína Tumoral 1 Controlada por Tradução , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cancer Ther ; 15(11): 2575-2585, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27573424

RESUMO

To date, surgery remains the only option for the treatment of chondrosarcoma, which is radio- and chemoresistant due in part to its large extracellular matrix (ECM) and poor vascularity. In case of unresectable locally advanced or metastatic diseases with a poor prognosis, improving the management of chondrosarcoma still remains a challenge. Our team developed an attractive approach of improvement of the therapeutic index of chemotherapy by targeting proteoglycan (PG)-rich tissues using a quaternary ammonium (QA) function conjugated to melphalan (Mel). First of all, we demonstrated the crucial role of the QA carrier for binding to aggrecan by surface plasmon resonance. In the orthotopic model of Swarm rat chondrosarcoma, an in vivo biodistribution study of Mel and its QA derivative (Mel-QA), radiolabeled with tritium, showed rapid radioactivity accumulation in healthy cartilaginous tissues and tumor after [3H]-Mel-QA injection. The higher T/M ratio of the QA derivative suggests some advantage of QA-active targeting of chondrosarcoma. The antitumoral effects were characterized by tumor volume assessment, in vivo 99mTc-NTP 15-5 scintigraphic imaging of PGs, 1H-HRMAS NMR spectroscopy, and histology. The conjugation of a QA function to Mel did not hamper its in vivo efficiency and strongly improved the tolerability of Mel leading to a significant decrease of side effects (hematologic analyses and body weight monitoring). Thus, QA conjugation leads to a significant improvement of the therapeutic index, which is essential in oncology and enable repeated cycles of chemotherapy in patients with chondrosarcoma. Mol Cancer Ther; 15(11); 2575-85. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Proteoglicanas/metabolismo , Animais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Condrossarcoma/diagnóstico , Condrossarcoma/tratamento farmacológico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Melfalan/química , Melfalan/farmacologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Compostos de Amônio Quaternário/química , Ratos
15.
J Nucl Med ; 56(5): 798-804, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25840975

RESUMO

UNLABELLED: This study determined, using the intraarticular complete Freund adjuvant arthritis mice model, whether the radiotracer (99m)Tc-N-(triethylammonium)-3-propyl-[15]ane-N5 ((99m)Tc-NTP 15-5) targeting proteoglycans has a pathophysiologic validity for in vivo imaging of rheumatoid arthritis (RA) and its response to chronic nonsteroidal antiinflammatory drugs. METHODS: We investigated the time course of cartilage remodeling by (99m)Tc-NTP 15-5 scintigraphy, bone damages by (99m)Tc-hydroxymethylene diphosphonate imaging, inflammation by (18)F-FDG PET, and joint proteoglycan content and pain behavior in animals, without and with meloxicam treatment. Paw circumference, thermal pain behavior, and histology as well as proteoglycan content of the whole joint were determined. RESULTS: (99m)Tc-NTP 15-5 showed specific tracer accumulation within RA joints, with a significant increase in scintigraphic ratio observed in RA versus shams from day 3 to day 28. (18)F-FDG evidenced uptake in RA joints from day 15 to day 29. Animals treated with meloxicam (5 mg/kg) exhibited a dose-dependent decrease in both (99m)Tc-NTP 15-5 and (18)F-FDG uptake ratios versus saline-treated animals. (99m)Tc-hydroxymethylene diphosphonate bone scans were only positive at day 14 in RA versus shams, with a significant effect of meloxicam. An increase in proteoglycans of RA joint and thermal pain behavior were observed and were dose-dependently reduced by meloxicam. CONCLUSION: These experimental results bring data in favor of the (99m)Tc-NTP 15-5 radiotracer for assessing, in vivo, cartilage remodeling in RA that could be used to monitor therapy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Cartilagem/efeitos dos fármacos , Cartilagem/diagnóstico por imagem , Compostos Heterocíclicos com 1 Anel , Compostos de Amônio Quaternário , Tecnécio , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Fluordesoxiglucose F18 , Masculino , Camundongos , Tomografia por Emissão de Pósitrons , Proteoglicanas/metabolismo
16.
Appl Radiat Isot ; 101: 1-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25813000

RESUMO

The cartilage-targeting strategy is based on the strong affinity of quaternary ammonium (QA) functions for cartilage proteoglycans. We use a bifunctional agent containing QA moiety and a polyazamacrocycle structure able to complex technetium-99m. (99m)Tc-NTP 15-5 was selected for its high stability and its high affinity for proteoglycans in vivo. Labeling conditions of NTP 15-5 were optimized, and a lyophilized kit was developed for radiolabeling of (99m)Tc-NTP 15-5 (radiochemical yields 94.6±1.8%). (99m)Tc-NTP 15-5 was stable and resulted in favorable biological evaluations.


Assuntos
Cartilagem/diagnóstico por imagem , Cartilagem/metabolismo , Compostos Heterocíclicos com 1 Anel/isolamento & purificação , Compostos de Organotecnécio/isolamento & purificação , Proteoglicanas/metabolismo , Compostos de Amônio Quaternário/isolamento & purificação , Compostos Radiofarmacêuticos/isolamento & purificação , Tecnécio/isolamento & purificação , Animais , Doenças das Cartilagens/diagnóstico por imagem , Doenças das Cartilagens/metabolismo , Química Farmacêutica , Liofilização/métodos , Compostos Heterocíclicos com 1 Anel/sangue , Compostos Heterocíclicos com 1 Anel/farmacocinética , Indicadores e Reagentes , Compostos de Organotecnécio/sangue , Compostos de Organotecnécio/farmacocinética , Compostos de Amônio Quaternário/sangue , Compostos de Amônio Quaternário/farmacocinética , Cintilografia , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Tecnécio/sangue , Tecnécio/farmacocinética
17.
Eur J Med Chem ; 92: 818-38, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25637883

RESUMO

Melanin pigment represents an attractive target to address specific treatment to melanoma cells, such as cytotoxic radionuclides. However, less than half of the patients have pigmented metastases. Hence, specific marker is required to stratify this patient population before proceeding with melanin-targeted radionuclide therapy. In such a context, we developed fluorinated analogues of a previously studied melanin-targeting ligand, N-(2-diethylaminoethyl)-6-iodoquinoxaline-2-carboxamide (ICF01012). These latter can be labeled either with (18)F or (131)I/(125)I for positron emission tomography imaging (melanin-positive patient selection) and targeted radionuclide therapy purposes. Here we describe the syntheses, radiosyntheses and preclinical evaluations on melanoma-bearing mice model of several iodo- and fluoro(hetero)aromatic derivatives of the ICF01012 scaffold. After preliminary planar gamma scintigraphic and positron emission tomography imaging evaluations, [(125)I]- and [(18)F]-N-[2-(diethylamino)ethyl]-4-fluoro-3-iodobenzamides ([(125)I]4, [(18)F]4) were found to be chemically and biologically stable with quite similar tumor uptakes at 1 h p.i. (9.7 ± 2.6% ID/g and 6.8 ± 1.9% ID/g, respectively).


Assuntos
Melanoma Experimental/diagnóstico , Melanoma Experimental/tratamento farmacológico , Imagem Molecular , Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Animais , Modelos Animais de Doenças , Radioisótopos de Flúor/química , Humanos , Radioisótopos do Iodo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
18.
ACS Med Chem Lett ; 6(2): 168-72, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25699145

RESUMO

The new readily available prosthetic group, tetrafluorophenyl 4-fluoro-3-iodobenzoate (TFIB), designed for both molecular imaging and targeted radionuclide therapy purposes was radiolabeled either with fluorine or iodine radionuclides with excellent radiochemical yields and purities. These radiolabeled tags were conjugated to N,N-diethylethylenediamine to give melanin-targeting radiotracers [ (125) I]9 and [ (18) F]9, which were successfully evaluated by PET and gamma scintigraphic imaging in B16F0 pigmented melanoma-bearing C57BL/6J mice. Then, radiolabeled [ (125) I]/[ (18) F]TFIB was used to tag tumor-targeting peptides (i.e., PEG3[c(RGDyK)]2 and NDP-MSH targeting αvß3 integrin and MC1R receptors, respectively) in mild conditions and with good radiochemical yields (47-83% d.c.) and purities (>99%). The resulting radiolabeled peptides were assessed both in vitro and by PET imaging in animal models.

19.
Nanomedicine ; 10(8): 1887-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24972007

RESUMO

This work takes place in the "cartilage targeting strategy", consisting in using the quaternary ammonium (QA) function as a vector to proteoglycans (PGs) of extracellular matrix (ECM). The objective was to demonstrate that QA could address gadolinium based small rigid platforms (SRP) to PG-rich tumors. SRP were functionalized with QA, radiolabeled with (111)Indium and evaluated for biodistribution in vivo, respectively to non functionalized SRP, in two experimental models: (i) the HEMCSS human xenograft model; (ii) the Swarm rat chondrosarcoma (SRC) orthotopic model. The contribution of cellular uptake to tumoral accumulation of nano-objects was also determined from in vitro binding. In the SRC model expressing a highly and homogeneously distributed PG content, tumor accumulation and retention of SRP@QA were increased by 40% as compared to non-functionalized SRP. When considering the radiosensitizing potential of gadolinium based SRP, these results provide hopes for the radiobiological approach of highly resistant tumor such as chondrosarcoma. FROM THE CLINICAL EDITOR: In this study, gadolinium-based complexing DOTA-surfaced small polysiloxane nanoparticles were functionalized with quaternary ammonium derivatives that target the extracellular matrix of chondrosarcoma. The authors demonstrate in a rat model that the use of these constructs results in a 40% increase of tumor accumulation and retention compared to non-functionalized (and otherwise same) platforms. Similar approaches would be welcome additions to the clinical armamentarium addressing chondrosarcoma.


Assuntos
Compostos de Amônio/química , Condrossarcoma/metabolismo , Nanopartículas/química , Compostos de Amônio/uso terapêutico , Animais , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Matriz Extracelular , Gadolínio/química , Humanos , Masculino , Nanopartículas/metabolismo , Ratos , Ratos Sprague-Dawley , Siloxanas/química , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Med Chem ; 56(21): 8455-67, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24044531

RESUMO

Our project deals with a multimodal approach using a single fluorinated and iodinated melanin-targeting structure and offering both imaging (positron emission tomography (PET)/fluorine-18) and treatment (targeted radionuclide therapy/iodine-131) of melanoma. Six 6-iodoquinoxaline-2-carboxamide derivatives with various side chains bearing fluorine were synthesized and radiofluorinated, and their in vivo biodistribution was studied by PET imaging in B16Bl6 primary melanoma-bearing mice. Among this series, [(18)F]8 emerged as the most promising compound. [(18)F]8 was obtained by a fully automated radiosynthesis process within 57 min with an overall radiochemical yield of 21%, decay-corrected. PET imaging of [(18)F]8 demonstrated very encouraging results as early as 1 h postinjection with high tumor uptake (14.33% ± 2.11% ID/g), high contrast (11.04 ± 2.87 tumor-to-muscle ratio), and favorable clearance properties. These results, associated with the previously reported pharmacokinetic properties and dosimetry of 8, make it a potential agent for both PET imaging and targeted radionuclide therapy of melanoma.


Assuntos
Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/radioterapia , Tomografia por Emissão de Pósitrons , Quinoxalinas/uso terapêutico , Traçadores Radioativos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Quinoxalinas/síntese química , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA