Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 147(21): 4888-4894, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36168915

RESUMO

There is a need for non-contact, real-time vapor detection of drugs to combat illicit transportation and help curb the opioid epidemic. The low volatility of drugs, like fentanyl, makes room temperature vapor detection of illicit drugs challenging, but feasible by atmospheric flow tube-mass spectrometry (AFT-MS). AFT-MS is a non-contact vapor detection approach capable of ultra-trace detection of drugs, including fentanyl and its analogs at low parts-per-quadrillion (ppqv) levels. The determination of vapor pressure values of fentanyl is necessary to understand potential vapor concentrations that may be available for detection. In this paper, vapor pressures of fentanyl free base and fentanyl hydrochloride salt (a common form of the illicit drug) were measured as a function of temperature at or near ambient conditions using the transpiration (gas saturation) method and AFT-MS. Based on our measurements, the vapor pressure of fentanyl at 25 °C is 9.0 × 10-14 atm (90 ppqv), and the vapor pressure of fentanyl hydrochloride at 25 °C is 1.8 × 10-17 atm (0.018 ppqv). We also demonstrate non-contact, real-time vapor detection of fentanyl. Preconcentration of vapors can further extend the detection capabilities. The collection, desorption, and detection of fentanyl vapors at ambient conditions was demonstrated for sampling times of seconds to an hour resulting in increased signal. AFT-MS is a viable detection method of fentanyl and other drugs for screening of packages and cargo.


Assuntos
Fentanila , Drogas Ilícitas , Fentanila/análise , Pressão de Vapor , Temperatura , Analgésicos Opioides/análise , Gases
2.
J Hazard Mater ; 430: 128507, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739685

RESUMO

The interaction between radionuclides and cementitious material phases is crucial in the prediction of the long-term disposal behavior of cementitious waste forms. This work focuses on the behavior of technetium-99 (Tc) within a hydrated-lime based waste form developed as a candidate to immobilize high-sulphate containing liquid wastes known to inhibit cement solidification when using a fly ash based formulation. In leach testing, the hydrated-lime based formulation demonstrated improvement in Tc retention over a fly ash containing formulation beginning after 14 d leaching. The mineralogical evolution of the hydrated-lime samples during leach testing showed a decrease in portlandite content and reduction capacity at the onset of the Tc retention improvement. Leach testing upwards of 400 days showed the improved Tc retention was sustained. Samples cured for different lengths of time (28 days vs 60 days) confirmed that the improved Tc retention and mineralogic change was caused by cement - leachant interactions and not the sample curing time. The Tc observed diffusivities in the hydrated-lime samples are amongst the lowest measured in a cement waste form tested for development at the US Department of Energy Hanford site, leading to a possible pathway to improved cement conditioning where contaminants can be retained for long disposal times.


Assuntos
Cinza de Carvão , Tecnécio , Compostos de Cálcio , Materiais de Construção , Óxidos
3.
Environ Sci Technol ; 55(2): 1057-1066, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33370096

RESUMO

Ettringite is a naturally occurring mineral found in cementitious matrices that is known for its ability to incorporate environmentally mobile oxyanion contaminants. To better assess this immobilization mechanism for contaminants within cementitious waste forms intended for nuclear waste storage, this work explores how mixed oxyanion contaminants compete for ettringite incorporation and influence the evolving mineralogy. Ettringite was precipitated in the presence of TcO4-, IO3-, and/or CrO42-, known contaminants of concern to nuclear waste treatment, over pre-determined precipitation periods. Solution analyses quantified contaminant removal, and the collected solid was characterized using bulk and microprobe X-ray diffraction coupled with pair distribution function and microprobe X-ray fluorescence analyses. Results suggest that ≥96% IO3- is removed from solution, regardless of ettringite precipitation time or the presence of TcO4- or CrO42-. However, TcO4- removal remained <20%, was not significantly improved with longer ettringite precipitation times, and decreased to zero in the presence of IO3-. When IO3- is co-mingled with CrO42-, calcite and gypsum are formed as secondary mineral phases, which allows for oxyanion partitioning, e.g., IO3- incorporation into ettringite, and CrO42- incorporation into calcite. Results from this work exemplify the importance of competitive immobilization when assessing waste form performance and environmental risk of contaminant release.


Assuntos
Minerais , Resíduos Radioativos , Difração de Raios X
4.
Environ Sci Technol ; 54(21): 13610-13618, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32910645

RESUMO

Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4-) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4-. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4- into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4- and one OH- during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH- for charge compensation upon TcO4- substitution. Furthermore, AIMD calculations support favorable TcO4- substitution at the SO42- site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4- immobilization and the overall lifetime performance of cementitious waste forms.


Assuntos
Resíduos Radioativos , Pertecnetato Tc 99m de Sódio , Minerais , Sulfatos
5.
J Contam Hydrol ; 235: 103705, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32927336

RESUMO

A practical approach for in situ hydrous ferric oxide (HFO) precipitation was developed for iodine immobilization under field-scale conditions at the Hanford Site. A series of 1D meter-long bench-top column experiments packed with Hanford sediments was conducted with a single acidic ferric solution (0.1 M, pH = 1.5) injection. Because carbonate and clay minerals are widely present in sediments, self-pH buffering of the injected acidic ferric solution occurred due to mineral dissolution, leading to HFO precipitation under a neutral condition. Up to ~12 mg/g Fe as HFO successfully precipitated and evenly distributed in the column sediments, and the remobilization of the neoformed HFO precipitates was limited (≤ ~3.16 wt% after over 100 pore volumes (pv) of flushing). The transport of iodate (IO3-) in the HFO-amended sediments was strongly retarded through both adsorption and co-precipitation processes. However, reversible adsorption of iodine on HFO was observed, which might limit its application to slow-moving groundwater systems.


Assuntos
Água Subterrânea , Iodo , Adsorção , Carbonatos , Compostos Férricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA