Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Health Policy Plan ; 39(2): 188-197, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38179856

RESUMO

In 2015, the World Health Assembly adopted a global action plan (GAP) on antimicrobial resistance (AMR). Member states were encouraged to develop their own national action plans (NAPs) in alignment with the GAP. To-date, in systematic assessments of NAPs, the Latin American specific context has not been previously analysed. Here we examined 11 Latin American NAPs published between 2015 and 2021 using content analysis. We focused on two approaches: (1) alignment between the strategic objectives and actions defined in the GAP, and those outlined in the NAPs via a content indicator; and (2) assessment of the NAPs via a governance framework covering 'policy design', 'implementation tools' and 'monitoring and evaluation' areas. We observed a high alignment with the strategic objectives of the GAP; however, the opposite was observed for the corresponding actions. Our results showed that the governance aspects contained within coordination and participation domains were addressed by every Latin American NAP, whereas monitoring and assessment areas, as well as incorporating the environment, would need more attention in subsequent NAPs. Given that AMR is a global health threat and collective efforts across regions are necessary to combat it, our findings can benefit member states by highlighting how to strengthen the AMR strategies in Latin America, while also supporting global policy formulation.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/uso terapêutico , América Latina , Política de Saúde , Saúde Global
2.
Genetics ; 226(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38142447

RESUMO

Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7. However, the functional significance of activity in regulating circadian clock dynamics and plant development is unknown. To explore this regulatory dynamic further, we first employed mathematical modeling to simulate the effect of the prr9/prr7 mutation on the elf3 circadian phenotype. These simulations suggested that simultaneous mutations in prr9/prr7 could rescue the elf3 circadian arrhythmia. Following these simulations, we generated all Arabidopsis elf3/prr9/prr7 mutant combinations and investigated their circadian and developmental phenotypes. Although these assays could not replicate the results from the mathematical modeling, our results have revealed a complex epistatic relationship between ELF3 and PRR9/7 in regulating different aspects of plant development. ELF3 was essential for hypocotyl development under ambient and warm temperatures, while PRR9 was critical for root thermomorphogenesis. Finally, mutations in prr9 and prr7 rescued the photoperiod-insensitive flowering phenotype of the elf3 mutant. Together, our results highlight the importance of investigating the genetic relationship among plant circadian genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Methods Mol Biol ; 2398: 75-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34674169

RESUMO

ODE models have been used for decades to help circadian biologists understand the rhythmic phenomena they observe and to predict the behavior of plant circadian rhythms under changed conditions such as genetic mutations or novel environments. The models vary in complexity, and for good reasons, but they share the same mathematical ingredients in their construction and the same computational methods in their solution. Here we explain the fundamental concepts which define ODE models. We sketch how ODE models can be understood, how they can be solved mathematically and computationally, and the important distinction between autonomous and non-autonomous phenomena. The concepts are illustrated with examples which illustrate the basic concepts and which may help to describe the strengths and limitations of these models and the computational investigations of their properties.


Assuntos
Ritmo Circadiano , Modelos Biológicos , Simulação por Computador , Plantas
4.
J Theor Biol ; 509: 110495, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966827

RESUMO

The biological interactions underpinning the Arabidopsis circadian clock have been systematically uncovered and explored by biological experiments and mathematical models. This is captured by a series of published ordinary differential equation (ODE) models, which describe plant clock dynamics in response to light/dark conditions. However, understanding the role of temperature in resetting the clock (entrainment) and the mechanisms by which circadian rhythms maintain a near-24 h period over a range of temperatures (temperature compensation) is still unclear. Understanding entrainment and temperature compensation may elucidate the principles governing the structure of the circadian clock network. Here we explore the design principles of the Arabidopsis clock and its responses to changes in temperature. We analyse published clock models of Arabidopsis, spanning a range of complexity, and incorporate temperature-dependent dynamics into the parameters of translation rates in these models, to discern which regulatory patterns may best explain clock function and temperature compensation. We additionally construct three minimal clock models and explore what key features govern their rhythmicity and temperature robustness via a series of random parameterisations. Results show that the highly repressive interactions between the components of the plant clock, together with autoregulation patterns and three-node feedback loops, are associated with circadian function of the clock in general, and enhance its robustness to temperature variation in particular. However, because the networks governing clock function vary with time due to light and temperature conditions, we emphasise the importance of studying plant clock functionality in its entirety rather than as a set of discrete regulation patterns.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Retroalimentação , Regulação da Expressão Gênica de Plantas , Homeostase , Temperatura , Fatores de Transcrição/metabolismo
5.
J Circadian Rhythms ; 17: 5, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31139231

RESUMO

The circadian clock is a biological mechanism that permits some organisms to anticipate daily environmental variations. This clock generates biological rhythms, which can be reset by environmental cues such as cycles of light or temperature, a process known as entrainment. After entrainment, circadian rhythms typically persist with approximately 24 hours periodicity in free-running conditions, i.e. in the absence of environmental cues. Experimental evidence also shows that a free-running period close to 24 hours is maintained across a range of temperatures, a process known as temperature compensation. In the plant Arabidopsis, the effect of light on the circadian system has been widely studied and successfully modelled mathematically. However, the role of temperature in periodicity, and the relationship between entrainment and compensation, are not fully understood. Here we adapt recent models to incorporate temperature dependence by applying Arrhenius equations to the parameters of the models that characterize transcription, translation, and degradation rates. We show that the resulting models can exhibit thermal entrainment and temperature compensation, but that these phenomena emerge from physiologically different sets of processes. Further simulations combining thermal and photic forcing in more realistic scenarios clearly distinguish between the processes of entrainment and compensation, and reveal temperature compensation as an emergent property which can arise as a result of multiple temperature-dependent interactions. Our results consistently point to the thermal sensitivity of degradation rates as driving compensation and entrainment across a range of conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA