Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Diagn Microbiol Infect Dis ; 109(3): 116336, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723452

RESUMO

Current guideline recommends the use of two identification methods for Neisseria gonorrhoeae. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) is now used for primary identification and may be sufficient for definitive identification of N. gonorrhoeae. The performance of three secondary tests (BactiCard, RapID NH and NET test) were compared using 45 bacterial isolates, including 37 Neisseria species. These secondary tests demonstrated diminished specificity (67% - 88%) for N. gonorrhoeae compared with MALDI-TOF. Additionally, data from six clinical microbiology laboratories was used to compare confirmatory test costs and the agreement of results with MALDI-TOF. Discrepancies were documented for 9.4% of isolates, though all isolates (n= 288) identified by MALDI-TOF as N. gonorrhoeae were confirmed by the reference laboratory. These data demonstrate that MALDI-TOF alone is sufficient for N. gonorrhoeae identification, as secondary did not add diagnostic value but do add costs to the testing process.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neisseria gonorrhoeae/isolamento & purificação , Neisseria gonorrhoeae/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia , Humanos , Gonorreia/diagnóstico , Gonorreia/microbiologia , Técnicas Bacteriológicas/economia , Técnicas Bacteriológicas/métodos
4.
Cardiovasc Res ; 119(6): 1441-1452, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35904261

RESUMO

AIMS: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS: 4-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/day) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory faecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSION: The microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Microbiota , Animais , Masculino , Camundongos , Inflamação , Camundongos Endogâmicos C57BL
5.
Circ Res ; 128(7): 934-950, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793332

RESUMO

The pathogenesis of hypertension is known to involve a diverse range of contributing factors including genetic, environmental, hormonal, hemodynamic and inflammatory forces, to name a few. There is mounting evidence to suggest that the gut microbiome plays an important role in the development and pathogenesis of hypertension. The gastrointestinal tract, which houses the largest compartment of immune cells in the body, represents the intersection of the environment and the host. Accordingly, lifestyle factors shape and are modulated by the microbiome, modifying the risk for hypertensive disease. One well-studied example is the consumption of dietary fibers, which leads to the production of short-chain fatty acids and can contribute to the expansion of anti-inflammatory immune cells, consequently protecting against the progression of hypertension. Dietary interventions such as fasting have also been shown to impact hypertension via the microbiome. Studying the microbiome in hypertensive disease presents a variety of unique challenges to the use of traditional model systems. Integrating microbiome considerations into preclinical research is crucial, and novel strategies to account for reciprocal host-microbiome interactions, such as the wildling mouse model, may provide new opportunities for translation. The intricacies of the role of the microbiome in hypertensive disease is a matter of ongoing research, and there are several technical considerations which should be accounted for moving forward. In this review we provide insights into the host-microbiome interaction and summarize the evidence of its importance in the regulation of blood pressure. Additionally, we provide recommendations for ongoing and future research, such that important insights from the microbiome field at large can be readily integrated in the context of hypertension.


Assuntos
Microbioma Gastrointestinal/fisiologia , Hipertensão/etiologia , Animais , Fibras na Dieta/metabolismo , Modelos Animais de Doenças , Jejum/fisiologia , Ácidos Graxos Voláteis/biossíntese , Interações entre Hospedeiro e Microrganismos , Humanos , Hipertensão/prevenção & controle , Sistema Imunitário/fisiologia , Estilo de Vida , Camundongos , Pesquisa , Pesquisa Translacional Biomédica
6.
Nat Commun ; 12(1): 1970, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785752

RESUMO

Periods of fasting and refeeding may reduce cardiometabolic risk elevated by Western diet. Here we show in the substudy of NCT02099968, investigating the clinical parameters, the immunome and gut microbiome exploratory endpoints, that in hypertensive metabolic syndrome patients, a 5-day fast followed by a modified Dietary Approach to Stop Hypertension diet reduces systolic blood pressure, need for antihypertensive medications, body-mass index at three months post intervention compared to a modified Dietary Approach to Stop Hypertension diet alone. Fasting alters the gut microbiome, impacting bacterial taxa and gene modules associated with short-chain fatty acid production. Cross-system analyses reveal a positive correlation of circulating mucosa-associated invariant T cells, non-classical monocytes and CD4+ effector T cells with systolic blood pressure. Furthermore, regulatory T cells positively correlate with body-mass index and weight. Machine learning analysis of baseline immunome or microbiome data predicts sustained systolic blood pressure response within the fasting group, identifying CD8+ effector T cells, Th17 cells and regulatory T cells or Desulfovibrionaceae, Hydrogenoanaerobacterium, Akkermansia, and Ruminococcaceae as important contributors to the model. Here we report that the high-resolution multi-omics data highlight fasting as a promising non-pharmacological intervention for the treatment of high blood pressure in metabolic syndrome patients.


Assuntos
Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Jejum/fisiologia , Microbioma Gastrointestinal/fisiologia , Síndrome Metabólica/fisiopatologia , Idoso , Akkermansia/fisiologia , Índice de Massa Corporal , Desulfovibrionaceae/fisiologia , Dieta , Fezes/microbiologia , Feminino , Humanos , Hipertensão/complicações , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/microbiologia , Pessoa de Meia-Idade , Ruminococcus/fisiologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/fisiologia
7.
Cardiovasc Res ; 117(3): 863-875, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32374853

RESUMO

AIMS: Recent technical developments have allowed the study of the human microbiome to accelerate at an unprecedented pace. Methodological differences may have considerable impact on the results obtained. Thus, we investigated how different storage, isolation, and DNA extraction methods can influence the characterization of the intestinal microbiome, compared to the impact of true biological signals such as intraindividual variability, nutrition, health, and demographics. METHODS AND RESULTS: An observative cohort study in 27 healthy subjects was performed. Participants were instructed to collect stool samples twice spaced by a week, using six different methods (naive and Zymo DNA/RNA Shield on dry ice, OMNIgene GUT, RNALater, 95% ethanol, Zymo DNA/RNA Shield at room temperature). DNA extraction from all samples was performed comparatively using QIAamp Power Fecal and ZymoBIOMICS DNA Kits. 16S rRNA sequencing of the gut microbiota as well as qPCRs were performed on the isolated DNA. Metrics included alpha diversity as well as multivariate and univariate comparisons of samples, controlling for covariate patterns computationally. Interindividual differences explained 7.4% of overall microbiome variability, whereas the choice of DNA extraction method explained a further 5.7%. At phylum level, the tested kits differed in their recovery of Gram-positive bacteria, which is reflected in a significantly skewed enterotype distribution. CONCLUSION: DNA extraction methods had the highest impact on observed microbiome variability, and were comparable to interindividual differences, thus may spuriously mimic the microbiome signatures of various health and nutrition factors. Conversely, collection methods had a relatively small influence on microbiome composition. The present study provides necessary insight into the technical variables which can lead to divergent results from seemingly similar study designs. We anticipate that these results will contribute to future efforts towards standardization of microbiome quantification procedures in clinical research.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , RNA Ribossômico 16S/isolamento & purificação , Manejo de Espécimes , Adulto , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Alemanha , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Ribotipagem
8.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33055168

RESUMO

Owing to its capacity for unique (bio)-chemical specificity, microscopy with mid-infrared (IR) illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection, with current mid-IR detection technology often marrying inferior technical capabilities with prohibitive costs. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy while only requiring near-IR detection with a silicon-based camera. In this proof-of-principle implementation, we demonstrate widefield imaging over a broad wavelength range covering 3.4 to 4.3 µm and demonstrate a spatial resolution of 35 µm for images containing 650 resolved elements. Moreover, we demonstrate that our technique is suitable for acquiring microscopic images of biological tissue samples in the mid-IR. These results form a fresh perspective for potential relevance of quantum imaging techniques in the life sciences.

10.
Circulation ; 139(11): 1407-1421, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586752

RESUMO

BACKGROUND: Arterial hypertension and its organ sequelae show characteristics of T cell-mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypertensive end-organ damage. Recently, the CANTOS study (Canakinumab Antiinflammatory Thrombosis Outcome Study) targeting interleukin-1ß demonstrated that anti-inflammatory therapy reduces cardiovascular risk. The gut microbiome plays a pivotal role in immune homeostasis and cardiovascular health. Short-chain fatty acids (SCFAs) are produced from dietary fiber by gut bacteria and affect host immune homeostasis. Here, we investigated effects of the SCFA propionate in 2 different mouse models of hypertensive cardiovascular damage. METHODS: To investigate the effect of SCFAs on hypertensive cardiac damage and atherosclerosis, wild-type NMRI or apolipoprotein E knockout-deficient mice received propionate (200 mmol/L) or control in the drinking water. To induce hypertension, wild-type NMRI mice were infused with angiotensin II (1.44 mg·kg-1·d-1 subcutaneous) for 14 days. To accelerate the development of atherosclerosis, apolipoprotein E knockout mice were infused with angiotensin II (0.72 mg·kg-1·d-1 subcutaneous) for 28 days. Cardiac damage and atherosclerosis were assessed using histology, echocardiography, in vivo electrophysiology, immunofluorescence, and flow cytometry. Blood pressure was measured by radiotelemetry. Regulatory T cell depletion using PC61 antibody was used to examine the mode of action of propionate. RESULTS: Propionate significantly attenuated cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension in both models. Susceptibility to cardiac ventricular arrhythmias was significantly reduced in propionate-treated angiotensin II-infused wild-type NMRI mice. Aortic atherosclerotic lesion area was significantly decreased in propionate-treated apolipoprotein E knockout-deficient mice. Systemic inflammation was mitigated by propionate treatment, quantified as a reduction in splenic effector memory T cell frequencies and splenic T helper 17 cells in both models, and a decrease in local cardiac immune cell infiltration in wild-type NMRI mice. Cardioprotective effects of propionate were abrogated in regulatory T cell-depleted angiotensin II-infused mice, suggesting the effect is regulatory T cell-dependent. CONCLUSIONS: Our data emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health. The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial nonpharmacological preventive strategy for patients with hypertensive cardiovascular disease.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças da Aorta/tratamento farmacológico , Arritmias Cardíacas/prevenção & controle , Aterosclerose/tratamento farmacológico , Cardiomegalia/prevenção & controle , Hipertensão/tratamento farmacológico , Propionatos/farmacologia , Angiotensina II , Animais , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/fisiopatologia , Pressão Arterial/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Cardiomegalia/imunologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Hipertensão/fisiopatologia , Masculino , Camundongos Knockout para ApoE , Placa Aterosclerótica , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
11.
Mol Pharmacol ; 92(2): 162-174, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28495999

RESUMO

The rapidly activating delayed rectifier K+ channel (IKr) is encoded by the human ether-a-go-go-related gene (hERG), which is important for the repolarization of the cardiac action potential. Mutations in hERG or drugs can impair the function or decrease the expression level of hERG channels, leading to long QT syndrome. Thus, it is important to understand hERG channel trafficking and its regulation. For this purpose, G protein-coupled receptors (GPCRs), which regulate a vast array of cellular processes, represent a useful route. The development of designer GPCRs known as designer receptors exclusively activated by designer drugs (DREADDs) has made it possible to dissect specific GPCR signaling pathways in various cellular systems. In the present study, by expressing an arrestin-biased M3 muscarinic receptor-based DREADD (M3D-arr) in stable hERG-expressing human embryonic kidney (HEK) cells, we demonstrate that ß-arrestin signaling plays a role in hERG regulation. By exclusively activating M3D-arr using the otherwise inert compound, clozapine-N-oxide, we found that M3D-arr activation increased mature hERG expression and current. Within this paradigm, M3D-arr recruited ß-arrestin-1 to the plasma membrane, and promoted phosphoinositide 3-kinase-dependent activation of protein kinase B (Akt). The activated Akt acted through phosphatidylinositol 3-phosphate 5-kinase and Rab11 to facilitate hERG recycling to the plasma membrane. Potential ß-arrestin signaling-mediated increases in hERG and IKr were also observed in hERG-HEK cells as well as in neonatal rat ventricular myocytes treated with the muscarinic agonist carbachol. These findings provide novel insight into hERG trafficking and regulation.


Assuntos
Canal de Potássio ERG1/metabolismo , beta-Arrestinas/metabolismo , Animais , Clozapina/análogos & derivados , Clozapina/metabolismo , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/agonistas , Feminino , Células HEK293 , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA