Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138787

RESUMO

Point-contact spectroscopy was performed on bulk samples of electron-doped high temperature superconductor Nd2-xCexCuO4-δ. The samples were characterized using X-ray diffraction and scanning electron microscopy equipped with a wavelength-dispersive spectrometer and an electron backscatter diffraction detector. Samples with Ce content x = 0.15 showed the absence of spurious phases and randomly oriented grains, most of which had dimensions of approximately 220 µm2. The low-bias spectra in the tunneling regime, i.e., high-transparency interface, exhibited a gap feature at about ±5 meV and no zero-bias conductance, despite the random oriented grains investigated within our bulk samples, consistent with most of the literature data on oriented samples. High-bias conductance was also measured in order to obtain information on the properties of the barrier. A V-shape was observed in some cases, instead of the parabolic behavior expected for tunnel junctions.

2.
Nanomaterials (Basel) ; 10(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927868

RESUMO

We performed a detailed investigation of the superconducting properties of polycrystalline Pr1-xCexPt4Ge12 pellets. We report the effect of Ce substitution, for x = 0.07, on magnetic field phase diagram H-T. We demonstrate that the upper critical field is well described by the Ginzburg-Landau model and that the irreversibility field line has a scaling behaviour similar to cuprates. We also show that for magnetic fields lower than 0.4 T, the activation energy follows a power law of the type ?-1/2, suggesting a collective pinning regime with a quasi-2D character for the Ce-doped compound with x = 0.07. Furthermore, by means of a point contact Andreev reflection spectroscopy setup, we formed metal/superconductor nano-junctions as small as tens of nanometers on the PrPt4Ge12 parent compound (x = 0). Experimental results showed a wide variety of conductance features appearing in the dI/dV vs. V spectra, all explained in terms of a modified Blonder-Tinkham-Klapwijk model considering a superconducting order parameter with nodal directions as well as sign change in the momentum space for the sample with x = 0. The numerical simulations of the conductance spectra also demonstrate that s-wave pairing and anisotropic s-waves are unsuitable for reproducing experimental data obtained at low temperature on the un-doped compound. Interestingly, we show that the polycrystalline nature of the superconducting PrPt4Ge12 sample can favour the formation of an inter-grain Josephson junction in series with the point contact junction in this kind of experiments.

3.
Nanotechnology ; 30(42): 424001, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31315103

RESUMO

In superconducting materials a dynamical rearrangement of the vortex lattice occurs by forcing vortices at high velocities, until the system can become unstable. This phenomenon is known as vortex lattice instability, in which a sudden transition drives the superconducting system abruptly to the normal state. We present an experimental study on submicron bridges of NbN and NbTiN ultra-thin films with a thickness of few nanometers. The nanoscale effect on vortex lattice instability is investigated not only by the ultra-thin thickness in wide bridges, but also by changing the direction of the external magnetic field applied parallel and perpendicular to the c-axis epitaxial films. Indeed, measurements are performed for both orientations and show the vortex lattice instability, regardless of the superconducting material. Critical currents I c as well as instability currents I* have been compared. However, only in the parallel configuration an unusual 'flying birds' feature appears in the magnetic field dependence of current switching, as a consequence of the ratio I*/I c that is approaching 1. This amazing tendency becomes relevant for practical applications involving nanostructures, since by scaling down sample thickness and rotating the external field towards the in-plane orientation, the ultra-thin film geometry can mimic the bridge narrowing down to the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA