Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961620

RESUMO

Detection and discrimination of similar solvation energies of bioanalytes are vital in medical and practical applications. Currently, various advanced techniques are equipped to recognize these crucial bioanalytes. Each strategy has its own benefits and limitations. One-dimensional response, lack of discrimination power for anions, and reactive oxygen species (ROS) generally limit the utilized fluorescent probe. Therefore, a cutting-edge, refined method is expected to conquer these limitations. The use of 19F NMR spectroscopy for detecting and discriminating essential analytes in practical applications is an emerging technique. As an alternative strategy, we report two fluorinated boronic acid-appended pyridinium salts 5-F-o-BBBpy (1) and 5-CF3-o-BBBpy (2). Probe (1) acts as a chemosensor for identifying and discriminating inorganic anions with similar solvation energies with strong bidirectional 19F shifts in the lower ppm range. Probe (2) turns as a chemo dosimeter for the selective detection and precise quantification of hydrogen peroxide (H2O2) among other competing ROS. To demonstrate real-life applicability, we successfully quantified H2O2 via probe (2) in different pharmaceutical, dental, and cosmetic samples. We found that tuning the -F/-CF3 moiety to the arene boronic acid enables the π-conjugation, a crucial prerequisite for the discrimination of anions and H2O2. Characteristic 19F NMR fingerprints in the presence of anions revealed a complementary implication (IMP)/not implication (NIMP) logic function. Finally, the 16 distinct binary Boolean operations on two logic values are defined for "functional completeness" using the special property of the IMP gate. Boolean logic's ability to handle information by utilizing characteristic 19F NMR fingerprints has not been seen previously in a single chemical platform for detecting and differentiating such anions.

2.
Anal Chim Acta ; 1312: 342749, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834263

RESUMO

Carbon monoxide (CO) is an innate signaling molecule that can regulate immune responses and interact with crucial elements of the circadian clock. Moreover, pharmacologically, CO has been substantiated for its therapeutic advantages in animal models of diverse pathological conditions. Given that an excessive level of CO can be toxic, it is imperative to quantify the necessary amount for therapeutic use accurately. However, estimating gaseous CO is notably challenging. Therefore, novel techniques are essential to quantify CO in therapeutic applications and overcome this obstacle precisely. The classical Myoglobin (Mb) assay technique has been extensively used to determine the amount of CO-release from CO-releasing molecules (CORMs) within therapeutic contexts. Nevertheless, specific challenges arise when applying the Mb assay to evaluate CORMs featuring innovative molecular architectures. Here, we report a fluorinated photo-CORM (CORM-FBS) for the photo-induced CO-release. We employed the 19F NMR spectroscopy approach to monitor the release of CO as well as quantitative evaluation of CO release. This new 19F NMR approach opens immense opportunities for researchers to develop reliable techniques for identifying molecular structures, quantitative studies of drug metabolism, and monitoring the reaction process.


Assuntos
Monóxido de Carbono , Luz , Mioglobina , Monóxido de Carbono/análise , Mioglobina/química , Espectroscopia de Ressonância Magnética/métodos , Flúor/química , Animais , Processos Fotoquímicos
3.
J Am Chem Soc ; 139(33): 11413-11420, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28719195

RESUMO

The identification and discrimination of diols is of fundamental importance in medical diagnostics, such as measuring the contents of glucose in the urine of diabetes patients. Diol sensors are often based on fluorophore-appended boronic acids, but these severely lack discriminatory power and their response is one-dimensional. As an alternative strategy, we present the use of fluorinated boronic acid-appended pyridinium salts in combination with 19F NMR spectroscopy. A pool of 59 (bio)analytes was screened, containing monosaccharides, phosphorylated and N-acetylated sugars, polyols, carboxylic acids, nucleotides, and amines. The majority of analytes could be clearly detected and discriminated. In addition, glucose and fructose could be distinguished up to 1:9 molar ratio in mixtures. Crucially, the receptors feature high sensitivity and selectivity and are water-soluble, and their 19F-NMR analyte fingerprint is pH-robust, thereby making them particularly well-suited for medical application. Finally, to demonstrate this applicability, glucose could be detected in synthetic urine samples down to 1 mM using merely a 188 MHz NMR spectrometer.

4.
J Am Chem Soc ; 139(14): 4991-4994, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28345936

RESUMO

Co-registered molecular logic gates combine two different inputs and outputs, such as light and matter. We introduce a biocompatible CO-releasing molecule (CORM, A) as Mn(I) tricarbonyl complex with the ligand 5-(dimethylamino)-N, N-bis(pyridin-2-ylmethyl) naphthalene-1-sulfonamide (L). CO release is chaperoned by turn-on fluorescence and can be triggered by light (405 nm) as well as with hydrogen peroxide in aqueous phosphate buffer. Complex A behaves as a logic "OR" gate via co-registering the inputs of irradiation (light) and peroxide (matter) into the concomitant outputs fluorescence (light) and CO (matter). Cell viability assays confirm the low toxicity of A toward different human cell lines. The CORM has been used to track the inclusion of A into cancer cells.

5.
J Am Chem Soc ; 137(49): 15402-5, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26595191

RESUMO

Fluorinated boronic acid-appended benzyl bipyridinium salts, derived from 4,4'-, 3,4'-, and 3,3'-bipyridines, were synthesized and used to detect and differentiate diol-containing analytes at physiological conditions via (19)F NMR spectroscopy. An array of three water-soluble boronic acid receptors in combination with (19)F NMR spectroscopy discriminates nine diol-containing bioanalytes--catechol, dopamine, fructose, glucose, glucose-1-phosphate, glucose-6-phosphate, galactose, lactose, and sucrose--at low mM concentrations. Characteristic (19)F NMR fingerprints are interpreted as two-dimensional barcodes without the need of multivariate analysis techniques.


Assuntos
Ácidos Borônicos/química , Técnicas de Química Analítica/métodos , Processamento Eletrônico de Dados , Flúor/química , Espectroscopia de Ressonância Magnética , Fenazopiridina/química , Halogenação , Hidróxidos , Modelos Moleculares , Receptores de Superfície Celular/química
6.
Angew Chem Int Ed Engl ; 53(28): 7339-43, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24924187

RESUMO

A method to integrate an (in principle) unlimited number of molecular logic gates to construct complex circuits is presented. Logic circuits, such as half- or full-adders, can be reinterpreted by using the functional completeness of the implication function (IMP) and the trivial FALSE operation. The molecular gate IMP is represented by a fluorescent boronic acid sugar probe. An external wiring algorithm translates the fluorescent output from one gate into a chemical input for the next gate on microtiter plates. This process is demonstrated on a four-bit full adder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA