Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neuron ; 112(12): 1959-1977.e10, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38614103

RESUMO

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.


Assuntos
Sinalização do Cálcio , Epilepsia , Camundongos Knockout , Microglia , Fagocitose , Receptores Purinérgicos P2 , Animais , Microglia/metabolismo , Microglia/imunologia , Camundongos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/genética , Sinalização do Cálcio/fisiologia , Epilepsia/metabolismo , Epilepsia/imunologia , Epilepsia/genética , Difosfato de Uridina/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Hipocampo/metabolismo , Neuroimunomodulação/fisiologia
2.
Brain ; 147(2): 566-589, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776513

RESUMO

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Malária Cerebral/prevenção & controle , Células Endoteliais/patologia , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Linfócitos T CD8-Positivos , Endotélio/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Neuro Oncol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37941134

RESUMO

BACKGROUND: Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS: We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both glioblastoma patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as in vivo two-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS: Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in pre-clinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS: Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found TREM2 enhance the phagocytosis of tumor cells and promote an immune response by facilitating MHCII-associated CD4+ T cell responses against gliomas.

4.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398001

RESUMO

Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1ß. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.

5.
Mol Psychiatry ; 28(7): 2857-2871, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37365239

RESUMO

Chemogenetic approaches using Designer Receptors Exclusively Activated by Designer Drugs (DREADD, a family of engineered GPCRs) were recently employed in microglia. Here, we used Cx3cr1CreER/+:R26hM4Di/+ mice to express Gi-DREADD (hM4Di) on CX3CR1+ cells, comprising microglia and some peripheral immune cells, and found that activation of hM4Di on long-lived CX3CR1+ cells induced hypolocomotion. Unexpectedly, Gi-DREADD-induced hypolocomotion was preserved when microglia were depleted. Consistently, specific activation of microglial hM4Di cannot induce hypolocomotion in Tmem119CreER/+:R26hM4Di/+ mice. Flow cytometric and histological analysis showed hM4Di expression in peripheral immune cells, which may be responsible for the hypolocomotion. Nevertheless, depletion of splenic macrophages, hepatic macrophages, or CD4+ T cells did not affect Gi-DREADD-induced hypolocomotion. Our study demonstrates that rigorous data analysis and interpretation are needed when using Cx3cr1CreER/+ mouse line to manipulate microglia.


Assuntos
Microglia , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Macrófagos
6.
Brain Behav Immun ; 112: 51-76, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236326

RESUMO

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Assuntos
COVID-19 , Viroses , Camundongos , Animais , Células T de Memória , Doenças Neuroinflamatórias , Linfócitos T CD8-Positivos , Encéfalo , Memória Imunológica
7.
Neurooncol Adv ; 5(1): vdad035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207119

RESUMO

Background: The nervous and immune systems interact in a reciprocal manner, both under physiologic and pathologic conditions. Literature spanning various CNS pathologies including brain tumors, stroke, traumatic brain injury and de-myelinating diseases describes a number of associated systemic immunologic changes, particularly in the T-cell compartment. These immunologic changes include severe T-cell lymphopenia, lymphoid organ contraction, and T-cell sequestration within the bone marrow. Methods: We performed an in-depth systematic review of the literature and discussed pathologies that involve brain insults and systemic immune derangements. Conclusions: In this review, we propose that the same immunologic changes hereafter termed 'systemic immune derangements', are present across CNS pathologies and may represent a novel, systemic mechanism of immune privilege for the CNS. We further demonstrate that systemic immune derangements are transient when associated with isolated insults such as stroke and TBI but persist in the setting of chronic CNS insults such as brain tumors. Systemic immune derangements have vast implications for informed treatment modalities and outcomes of various neurologic pathologies.

8.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066234

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) was recently highlighted as a novel immune suppressive marker in peripheral tumors. The aim of this study was to characterize TREM2 expression in gliomas and investigate its contribution in glioma progression by using Trem2-/- mouse line. Our results showed that higher TREM2 expression was correlated with poor prognosis in glioma patients. Unexpectedly, TREM2 deficiency did not have a beneficial effect in a pre-clinical model of glioma. The increased TREM2 expression in glioma was likely due to increased myeloid cell infiltration, as evidenced by our single-cell analysis showing that almost all microglia and macrophages in gliomas were TREM2+. Furthermore, we found that deficiency of TREM2 impaired tumor-myeloid phagocytosis and MHCII presentation, and significantly reduced CD4+ T cells in tumor hemispheres. Our results revealed a previously unrecognized protective role of tumor-myeloid TREM2 in promoting MHCII-associated CD4+ T cell response against gliomas.

9.
Cancer Immunol Res ; 11(6): 763-776, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36921098

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumor in adults, responsible for approximately 225,000 deaths per year. Despite preclinical successes, most interventions have failed to extend patient survival by more than a few months. Treatment with anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint blockade (ICB) monotherapy has been beneficial for malignant tumors such as melanoma and lung cancers but has yet to be effectively employed in GBM. This study aimed to determine whether supplementing anti-PD-1 ICB with engineered extended half-life IL2, a potent lymphoproliferative cytokine, could improve outcomes. This combination therapy, subsequently referred to as enhanced checkpoint blockade (ECB), delivered intraperitoneally, reliably cures approximately 50% of C57BL/6 mice bearing orthotopic GL261 gliomas and extends median survival of the treated cohort. In the CT2A model, characterized as being resistant to CBI, ECB caused a decrease in CT2A tumor volume in half of measured animals similar to what was observed in GL261-bearing mice, promoting a trending survival increase. ECB generates robust immunologic responses, features of which include secondary lymphoid organ enlargement and increased activation status of both CD4 and CD8 T cells. This immunity is durable, with long-term ECB survivors able to resist GL261 rechallenge. Through employment of depletion strategies, ECB's efficacy was shown to be independent of host MHC class I-restricted antigen presentation but reliant on CD4 T cells. These results demonstrate ECB is efficacious against the GL261 glioma model through an MHC class I-independent mechanism and supporting further investigation into IL2-supplemented ICB therapies for tumors of the central nervous system.


Assuntos
Glioblastoma , Glioma , Camundongos , Animais , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Meia-Vida , Camundongos Endogâmicos C57BL , Glioma/patologia , Linhagem Celular Tumoral
10.
Front Aging ; 3: 993658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276605

RESUMO

Surgical parabiosis enables sharing of the circulating milieu between two organisms. This powerful model presents diverse complications based on age, strain, sex, and other experimental parameters. Here, we provide an optimized parabiosis protocol for the surgical union of two mice internally at the elbow and knee joints with continuous external joining of the skin. This protocol incorporates guidance and solutions to complications that can occur, particularly in aging studies, including non-cohesive pairing, variable anesthesia sensitivity, external and internal dehiscence, dehydration, and weight loss. We also offer a straightforward method for validating postoperative blood chimerism and confirming its time course using flow cytometry. Utilization of our optimized protocol can facilitate reproducible parabiosis experimentation to dynamically explore mechanisms of aging and rejuvenation.

11.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167854

RESUMO

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Rejuvenescimento , Envelhecimento , Animais , Encéfalo/metabolismo , Senescência Celular/fisiologia , Fatores Quimiotáticos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Masculino , Camundongos
12.
Front Oncol ; 11: 770561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778089

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.

13.
Front Immunol ; 12: 726421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526998

RESUMO

CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.


Assuntos
Células Apresentadoras de Antígenos/patologia , Encefalopatias/virologia , Encéfalo/patologia , Antígenos H-2/imunologia , Theilovirus/imunologia , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/virologia , Atrofia , Encéfalo/imunologia , Encéfalo/virologia , Encefalopatias/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Macrófagos/patologia , Macrófagos/virologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/virologia
14.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196308

RESUMO

Clinical immunotherapy approaches are lacking efficacy in the treatment of glioblastoma (GBM). In this study, we sought to reverse local and systemic GBM-induced immunosuppression using the Helicobacter pylori neutrophil-activating protein (NAP), a potent TLR2 agonist, as an immunostimulatory transgene expressed in an oncolytic measles virus (MV) platform, retargeted to allow viral entry through the urokinase-type plasminogen activator receptor (uPAR). While single-agent murine anti-PD1 treatment or repeat in situ immunization with MV-s-NAP-uPA provided modest survival benefit in MV-resistant syngeneic GBM models, the combination treatment led to synergy with a cure rate of 80% in mice bearing intracranial GL261 tumors and 72% in mice with CT-2A tumors. Combination NAP-immunovirotherapy induced massive influx of lymphoid cells in mouse brain, with CD8+ T cell predominance; therapeutic efficacy was CD8+ T cell dependent. Inhibition of the IFN response pathway using the JAK1/JAK2 inhibitor ruxolitinib decreased PD-L1 expression on myeloid-derived suppressor cells in the brain and further potentiated the therapeutic effect of MV-s-NAP-uPA and anti-PD1. Our findings support the notion that MV strains armed with bacterial immunostimulatory antigens represent an effective strategy to overcome the limited efficacy of immune checkpoint inhibitor-based therapies in GBM, creating a promising translational strategy for this lethal brain tumor.


Assuntos
Antígenos de Bactérias/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia Viral Oncolítica/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/uso terapêutico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/metabolismo , Efeito Citopatogênico Viral , Feminino , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Pesquisa Translacional Biomédica , Internalização do Vírus
15.
Neurooncol Adv ; 3(1): vdab066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151268

RESUMO

The GL261 cell line, syngeneic on the C57BL/6 background, has, since its establishment half a century ago in 1970, become the most commonly used immunocompetent murine model of glioblastoma. As immunotherapy has entered the mainstream of clinical discourse in the past decade, this model has proved its worth as a formidable opponent against various immunotherapeutic combinations. Although advances in surgical, radiological, and chemotherapeutic interventions have extended mean glioblastoma patient survival by several months, 5-year survival postdiagnosis remains below 5%. Immunotherapeutic interventions, such as the ones explored in the murine GL261 model, may prove beneficial for patients with glioblastoma. However, even common immunotherapeutic interventions in the GL261 model still have unclear efficacy, with wildly discrepant conclusions being made in the literature regarding this topic. Here, we focus on anti-PD-1 checkpoint blockade monotherapy as an example of this pattern. We contend that a fine-grained analysis of how biological variables (age, sex, tumor location, etc.) predict treatment responsiveness in this preclinical model will better enable researchers to identify glioblastoma patients most likely to benefit from checkpoint blockade immunotherapy moving forward.

16.
Sci Immunol ; 5(53)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158975

RESUMO

Lower respiratory viral infections, such as influenza virus and severe acute respiratory syndrome coronavirus 2 infections, often cause severe viral pneumonia in aged individuals. Here, we report that influenza viral pneumonia leads to chronic nonresolving lung pathology and exacerbated accumulation of CD8+ tissue-resident memory T cells (TRM) in the respiratory tract of aged hosts. TRM cell accumulation relies on elevated TGF-ß present in aged tissues. Further, we show that TRM cells isolated from aged lungs lack a subpopulation characterized by expression of molecules involved in TCR signaling and effector function. Consequently, TRM cells from aged lungs were insufficient to provide heterologous protective immunity. The depletion of CD8+ TRM cells dampens persistent chronic lung inflammation and ameliorates tissue fibrosis in aged, but not young, animals. Collectively, our data demonstrate that age-associated TRM cell malfunction supports chronic lung inflammatory and fibrotic sequelae after viral pneumonia.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Memória Imunológica/imunologia , Pulmão/imunologia , Pneumonia Viral/imunologia , SARS-CoV-2/imunologia , Fatores Etários , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/imunologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Pulmão/virologia , Camundongos Endogâmicos C57BL , Orthomyxoviridae/imunologia , Orthomyxoviridae/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2/fisiologia , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
17.
Brain ; 143(12): 3629-3652, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253355

RESUMO

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Progressão da Doença , Feminino , Genes MHC da Classe II/genética , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/imunologia , Glioma/metabolismo , Glioma/patologia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Parabiose , Convulsões/induzido quimicamente , Baço/imunologia , Baço/patologia , Theilovirus , Timo/patologia
18.
J Immunol ; 205(5): 1228-1238, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32737149

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Cardiovirus/imunologia , Genes MHC Classe I/imunologia , Antígenos H-2/imunologia , Theilovirus/imunologia , Animais , Apresentação de Antígeno , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Nat Commun ; 11(1): 3187, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581235

RESUMO

The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNß infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile. Mechanistically, type I interferon (IFN) expressed following infection promotes apoptosis, activation, and inhibitory receptor expression, and interferon-insensitive CAR T cells enable combinatorial therapy with VSVmIFNß. Our study uncovers an unexpected mechanism of therapeutic interference, and prompts further investigation into the interaction between CAR T cells and oncolytic viruses to optimize combination therapy.


Assuntos
Imunoterapia Adotiva , Interferon beta/metabolismo , Vírus Oncolíticos/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Terapia Combinada , Feminino , Interferon beta/genética , Ativação Linfocitária , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Baço/imunologia
20.
Curr Opin Virol ; 41: 18-30, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32330821

RESUMO

The innate immune system is the first line of defense against infections with pathogens. It provides direct antiviral mechanisms to suppress the viral life cycle at multiple steps. Innate immune cells are specialized to recognize pathogen infections and activate and modulate adaptive immune responses through antigen presentation, co-stimulation and release of cytokines and chemokines. Measles virus, which causes long-lasting immunosuppression and immune-amnesia, primarily infects and replicates in innate and adaptive immune cells, such as dendritic cells, macrophages, T cells and B cells. To achieve efficient replication, measles virus has evolved multiple mechanisms to manipulate innate immune responses by both stimulation and blocking of specific signals necessary for antiviral immunity. This review will highlight our current knowledge in this and address open questions.


Assuntos
Imunidade Inata , Vírus do Sarampo/imunologia , Sarampo/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Interações Hospedeiro-Patógeno , Humanos , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA