Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064547

RESUMO

Background and Objectives: In this study, the effects of a six-week training program and various diets on subfatin, asprosin, irisin, leptin, ghrelin and the lipid profile were investigated in overweight women. Materials and Methods: A total of 78 women voluntarily participated in the study. Groups: The study was divided into eight groups: Healthy Control, Obese Control, Obese + Vegetarian, Obese + Ketogenic, Obese + Intermittent Fasting, Obese + Exercise + Vegetarian, Obese + Exercise + Ketogenic and Obese + Exercise + Intermittent Fasting. While there was no intervention in the healthy and obese control groups, the other groups followed predetermined exercise and diet programs for 6 weeks. Blood samples were taken from the participants in the research group twice (before and after the interventions). An autoanalyzer was used to determine the lipid profile in the blood samples taken, and the ELISA method was used to analyze other parameters. Results: Overall, a significant difference was found in the values of weight, BMI, subfatin, ghrelin, leptin, cholesterol, triglyceride, HDL and LDL as a result of the exercise and diet interventions (p < 0.05). There was no significant difference in asprosin and irisin values (p > 0.05). Conclusions: In conclusion, regular exercise and dietary interventions in obese women can regulate lipid profile, ghrelin, leptin and asprosin levels, and increasing irisin with exercise can activate lipid metabolism and support positive changes in lean mass.


Assuntos
Exercício Físico , Fibrilina-1 , Fibronectinas , Grelina , Leptina , Obesidade , Humanos , Feminino , Grelina/sangue , Leptina/sangue , Fibronectinas/sangue , Obesidade/sangue , Obesidade/fisiopatologia , Obesidade/complicações , Obesidade/dietoterapia , Adulto , Exercício Físico/fisiologia , Fibrilina-1/sangue , Índice de Massa Corporal , Pessoa de Meia-Idade , Adipocinas
2.
Biotech Histochem ; 99(1): 21-32, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933453

RESUMO

Metabolic syndrome (MetS) is a prevalent public health problem. Uric acid (UA) is increased by MetS. We investigated whether administration of UA and 10% fructose (F) would accelerate MetS formation and we also determined the effects of irisin and exercise. We used seven groups of rats. Group 1 (control); group 2 (sham); group 3 (10% F); group 4 (1% UA); group 5 (2% UA); group 6 (10% F + 1% UA); and Group 7, (10% F + 2% UA). After induction of MetS (groups 3 -7), Group 3 was divided into three subgroups: 3A, no further treatment; 3B, irisin treatment; 3C, irisin treatment + exercise. Group 4, 1% UA, which was divided into three subgroups: 4A, no further treatment; 4B, irisin treatment; 4C, Irisin treatment + exercise. Group 5, 2% UA, which was divided into three subgroups: 5A, no further treatment; 5B, irisin treatment; 5C, irisin treatment + exercise. Group 6, 10% F + 1% UA, which was divided into three subgroups: 6A, no further treatment; 6B, irisin treatment; 6C, irisin treatment + exercise. Group 7, 10% F + 2% UA, which was divided into three subgroups: 7A, no further treatment; 7B, irisin treatment; 7C, irisin treatment + exercise., Irisin was administered 10 ng/kg irisin intraperitoneally on Monday, Wednesday, Friday, Sunday each week for 1 month. The exercise animals (in addition to irisin treatment) also were run on a treadmill for 45 min on Monday, Wednesday, Friday, Sunday each week for 1 month. The rats were sacrificed and samples of liver, heart, kidney, pancreas, skeletal muscles and blood were obtained. The amounts of adropin (ADR) and betatrophin in the tissue supernatant and blood were measured using an ELISA method. Immunohistochemistry was used to detect ADR and betatrophin expression in situ in tissue samples. The duration of these experiments varied from 3 and 10 weeks. The order of development of MetS was: group 7, 3 weeks; group 6, 4 weeks; group 5, 6 weeks; group 4, 7 weeks; group 3, 10 weeks. Kidney, liver, heart, pancreas and skeletal muscle tissues are sources of adropin and betatrophin. In these tissues and in the circulation, adropin was decreased significantly, while betatrophin was increased significantly due to MetS; irisin + exercise reversed this situation. We found that the best method for creating a MetS model was F + UA2 supplementation. Our method is rapid and simple. Irisin + exercise was best for preventing MetS.


Assuntos
Fibronectinas , Síndrome Metabólica , Ratos , Animais , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Síndrome Metabólica/terapia , Proteína 8 Semelhante a Angiopoietina , Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA