Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Pharm ; 21(9): 4416-4429, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39058284

RESUMO

Monoclonal antibodies (mAbs) have high binding specificity and affinity, making them attractive for treating brain diseases. However, their effectiveness is limited by poor blood-brain barrier (BBB) penetration and rapid central nervous system (CNS) clearance. Our group identified blood-brain barrier modulator (BBBM) peptides that improved mAb penetration across the BBB into the brain. In this study, we investigated the pharmacokinetics of a mAb delivered to the brain using BBBMs after intravenous (IV) administration and explored the impact of antibody format (size, neonatal Fc receptor (FcRn) binding, hyaluronic acid binding) on brain clearance following direct injection into the central nervous system (CNS) via intracerebroventricular (ICV) injection. IRDye800CW-labeled antibodies were administered into C57BL/6 mice via ICV or IV injection, and organ concentrations were measured after various time points. When a mAb was coadministered with a BBBM peptide, the permeation of mAb across the BBB was increased compared to mAb alone at early time points; however, the mAb was cleared within 2 h from the brain. ICV experiments revealed that an antibody Fab fragment had a higher brain exposure than a mAb, and that a Fab fused to a hyaluronic acid binding domain (Fab-VG1) showed remarkable improvement in brain exposure. These findings suggest that BBBMs and antibody format optimization may be promising strategies for enhancing brain retention of therapeutic antibodies.


Assuntos
Anticorpos Monoclonais , Barreira Hematoencefálica , Encéfalo , Camundongos Endogâmicos C57BL , Receptores Fc , Animais , Barreira Hematoencefálica/metabolismo , Camundongos , Encéfalo/metabolismo , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Ácido Hialurônico/química , Masculino , Fragmentos Fab das Imunoglobulinas , Peptídeos/química , Peptídeos/farmacocinética , Distribuição Tecidual
2.
J Pharm Sci ; 113(7): 1975-1986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561054

RESUMO

Sialic acid (SA) is crucial for protecting glycoproteins from clearance. Efmarodocokin alfa (IL-22Fc), a fusion protein agonist that links IL-22 to the crystallizable fragment (Fc) of human IgG4, contains 8 N-glycosylation sites and exhibits heterogeneous and variable terminal sialylation biodistribution. This presents a unique challenge for Pharmacokinetic (PK) and Pharmacodynamic (PD) analysis and cross-species translation. In this study, we sought to understand how varying SA levels and heterogeneous distribution contribute to IL-22Fc's complex PKPD properties. We initially used homogenous drug material with varying SA levels to examine PKPD in mice. Population PKPD analysis based on mouse data revealed that SA was a critical covariate simultaneously accounting for the substantial between subject variability (BSV) in clearance (CL), distribution clearance (CLd), and volume of distribution (Vd). In addition to the well-established mechanism by which SA inhibits ASGPR activity, we hypothesized a novel mechanism by which decrease in SA increases the drug uptake by endothelial cells. This decrease in SA, leading to more endothelial uptake, was supported by the neonatal Fc receptor (FcRn) dependent cell-based transcytosis assay. The population analysis also suggested in vivo EC50 (IL-22Fc stimulating Reg3ß) was independent on SA, while the in-vitro assay indicated a contradictory finding of SA-in vitro potency relationship. We created a mechanism based mathematical (MBM) PKPD model incorporating the decrease in SA mediated endothelial and hepatic uptake, and successfully characterized the SA influence on IL-22Fc PK, as well as the increased PK exposure being responsible for increased PD. Thereby, the MBM model supported that SA has no direct impact on EC50, aligning with the population PKPD analysis. Subsequently, using the MBM PKPD model, we employed 5 subpopulation simulations to reconstitute the heterogeneity of drug material. The simulation accurately predicted the PKPD of heterogeneously and variably sialylated drug in mouse, monkey and human. The successful prospective validation confirmed the MBM's ability to predict IL-22Fc PK across variable SA levels, homogenous to heterogeneous material, and across species (R2=0.964 for clearance prediction). Our model prediction suggests an average of 1 mol/mol SA increase leads to a 50% increase in drug exposure. This underlines the significance of controlling sialic acid levels during lot-to-lot manufacturing.


Assuntos
Interleucina 22 , Interleucinas , Fígado , Ácido N-Acetilneuramínico , Proteínas Recombinantes de Fusão , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Glicosilação , Humanos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacocinética , Distribuição Tecidual , Masculino , Modelos Biológicos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos
3.
Biochim Biophys Acta Biomembr ; 1863(2): 183510, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189717

RESUMO

The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is the rate-limiting step of intestinal bile acid absorption in the enterohepatic circulation system of bile acids. Therefore, the regulation and stability of hASBT is vital in maintaining bile acid and cholesterol homeostasis and may serve as a potential target for cholesterol-related disorders. We hypothesized that post-translational mechanisms that govern hASBT function and regulation will provide novel insight on intestinal bile acid transport and homeostasis. In this study, we confirm the S-acylation status of hASBT via acyl biotin exchange in COS-1 cells and its impact on hASBT expression, function, kinetics, and protein stability. Using the acylation inhibitor, 2-bromopalmitate, we show that S-acylation is an important modification which modulates the function, surface expression, and maximal transporter flux (Jmax) of hASBT. By means of proteasome inhibitors, S-acylated hASBT was found to be cleared via the proteasome whereas a reduction in the palmitoylation status of hASBT resulted in rapid proteolytic degradation compared to the unmodified transporter. Screening of cysteine mutants in and or near transmembrane domains, some of which are exposed to the cytosol, confirmed Cys314 to be the predominate S-acylated residue. Lastly, we show that S-acylation was reduced in a mutant form of hASBT devoid of cytosolic facing tyrosine residues, suggestive of crosstalk between acylation and phosphorylation post-translational modification mechanisms.


Assuntos
Membrana Celular/metabolismo , Regulação da Expressão Gênica , Transportadores de Ânions Orgânicos Dependentes de Sódio/biossíntese , Simportadores/biossíntese , Acilação , Animais , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fosforilação , Estabilidade Proteica , Simportadores/genética
4.
Mol Pharm ; 16(8): 3569-3576, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31194565

RESUMO

The human apical sodium-dependent bile acid transporter (hASBT; SLC10A2) is responsible for the reclamation of bile acids from the intestinal lumen, providing a primary mechanism for bile acid and cholesterol homeostasis. However, the regulation of hASBT at the post-translational level is not well understood. In the present study, we investigated the role of Src family kinases (SFKs) and protein tyrosine phosphatases (PTPs) in the regulation of surface expression and function of hASBT. Inhibition of Src family kinases, via treatment with PP2, significantly reduced hASBT function, while the inhibition of PTPs by activated orthovanadate significantly induced function. Src family kinase inhibition by PP2 was associated with a concomitant decrease in maximum transport velocity (Jmax) correlated with a decrease in hASBT surface expression. Interestingly, PP2-mediated suppression of hASBT protein expression was rescued by the proteasome inhibitor MG132, suggesting that dephosphorylation impacts protein stability with the subsequent proteasome-dependent degradation of hASBT. Consequently, single-point mutations were introduced at five intracellular tyrosine residues: Y148F, Y216F, Y308F, Y311F, and Y337F. Although all mutants had significantly altered hASBT function without changes in total cellular expression, sequential tyrosine mutations at the five residues above rendered hASBT nonfunctional with diminished protein expression. Furthermore, orthovanadate-induced transport activity of single-point tyrosine mutants suggested a role for multiple tyrosine residues in the regulation of hASBT function and membrane expression. Overall, our data confirms that tyrosine phosphorylation mediated by Src family kinases (SFKs), in particular, regulates surface expression, function, and stability of hASBT.


Assuntos
Membrana Celular/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Tirosina/metabolismo , Animais , Células COS , Células CACO-2 , Chlorocebus aethiops , Humanos , Mucosa Intestinal/metabolismo , Leupeptinas/farmacologia , Mutagênese Sítio-Dirigida , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Simportadores/genética , Tirosina/genética , Vanadatos/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA