Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
PLoS One ; 19(5): e0300145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743740

RESUMO

Integration of renewable energy sources (RES) to the grid in today's electrical system is being encouraged to meet the increase in demand of electrical power and also overcome the environmental related problems by reducing the usage of fossil fuels. Power Quality (PQ) is a critical problem that could have an effect on utilities and consumers. PQ issues in the modern electric power system were turned on by a linkage of RES, smart grid technologies and widespread usage of power electronics equipment. Unified Power Quality Conditioner (UPQC) is widely employed for solving issues with the distribution grid caused by anomalous voltage, current, or frequency. To enhance UPQC performance, Fractional Order Proportional Integral Derivative (FOPID) is developed; nevertheless, a number of tuning parameters restricts its performance. The best solution for the FOPID controller problem is found by using a Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) are combined to make a hybrid optimization CO-OA algorithm approach to mitigate these problems. This paper proposes an improved FOPID controller to reduce PQ problems while taking load power into account. In the suggested model, a RES is connected to the grid system to supply the necessary load demand during the PQ problems period. Through the use of an enhanced FOPID controller, both current and voltage PQ concerns are separately modified. The pulse signal of UPQC was done using the optimal controller, which analyzes the error value of reference value and actual value to generate pulses. The integrated design mitigates PQ issues in a system at non-linear load and linear load conditions. The proposed model provides THD of 12.15% and 0.82% at the sag period, 10.18% and 0.48% at the swell period, and 10.07% and 1.01% at the interruption period of non-linear load condition. A comparison between the FOPID controller and the traditional PI controller was additionally taken. The results showed that the recommended improved FOPID controller for UPQC has been successful in reducing the PQ challenges in the grid-connected RESs system.


Assuntos
Algoritmos , Energia Renovável , Fontes de Energia Elétrica , Modelos Teóricos , Eletricidade
3.
Sensors (Basel) ; 21(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201995

RESUMO

Recently, most transportation systems have used an integrated electrical machine in their traction scheme, resulting in a hybrid electrified vehicle. As a result, an energy source is required to provide the necessary electric power to this traction portion. However, this cannot be efficient without a reliable recharging method and a practical solution. This study discusses the wireless recharge solutions and tests the system's effectiveness under various external and internal conditions. Moreover, the Maxwell tool is used in this research to provide a complete examination of the coils' position, size, number, and magnetic flux evolution when the coils are translated. In addition, the mutual inductance for each of these positions is computed to determine the ideal conditions for employing the wireless recharge tool for every charging application. A thorough mathematical analysis is also presented, and the findings clearly demonstrate the relationship between the magnet flux and the various external conditions employed in this investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA