Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
iScience ; 27(7): 110250, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021806

RESUMO

Precise double-strand break (DSB) repair is a paramount for genome stability. Homologous recombination (HR) repairs DSBs when cyclin-dependent kinase (CDK) activity is high, which correlates with the availability of the sister chromatid as a template. However, anaphase and telophase are paradoxical scenarios since high CDK favors HR despite sister chromatids being no longer aligned. To identify factors specifically involved in DSB repair in late mitosis, we have undertaken comparative proteomics in Saccharomyces cerevisiae and found that meiotic sister chromatid 1 (Msc1), a poorly characterized nuclear envelope protein, is significantly enriched upon both random and guided DSBs. We further show that Δmsc1 is more sensitive to DSBs in late mitosis, and has a delayed repair of DBSs, as indicated by increased Rad53 hyperphosphorylation, a higher presence of RPA foci, fewer Rad52 repair factories, and slower HR completion. We propose that Msc1 favors the later stages of HR and the timely completion of DSB repair before cytokinesis.

2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372977

RESUMO

The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.


Assuntos
Saccharomyces cerevisiae , Vacúolos , Núcleo Celular/metabolismo , Mitose , Nucléolo Celular/metabolismo
3.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961781

RESUMO

The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus-vacuole junctions and rDNA-NE tethering.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Anáfase , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
4.
Sci Rep ; 11(1): 14940, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294749

RESUMO

The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.


Assuntos
Cromossomos Fúngicos/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Segregação de Cromossomos , DNA Topoisomerases Tipo II/deficiência , Eletroforese em Gel de Campo Pulsado , Técnicas de Inativação de Genes , Mitose , Saccharomyces cerevisiae/genética
5.
Bioessays ; 42(7): e2000021, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32363600

RESUMO

It has been recently demonstrated that yeast cells are able to partially regress chromosome segregation in telophase as a response to DNA double-strand breaks (DSBs), likely to find a donor sequence for homology-directed repair (HDR). This regression challenges the traditional concept that establishes anaphase events as irreversible, hence opening a new field of research in cell biology. Here, the nature of this new behavior in yeast is summarized and the underlying mechanisms are speculated about. It is also discussed whether it can be reproduced in other eukaryotes. Overall, this work brings forwards the need of understanding how cells attempt to repair DSBs when transiting the latest stages of mitosis, i.e., anaphase and telophase.


Assuntos
Anáfase , Quebras de DNA de Cadeia Dupla , Segregação de Cromossomos , DNA , Reparo do DNA
6.
Mol Cell Oncol ; 6(5): e1648027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528706

RESUMO

DNA repair in late mitosis sets paradoxical scenarios. Cyclin-dependent kinase (CDK) activity is high, which favors homologous recombination (HR), despite a sister chromatid is not physically close to recombine with. We have found that DNA double-strand breaks partially revert chromosome segregation to find an intact template and repair through HR.

7.
Nat Commun ; 10(1): 3488, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375682

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 10(1): 2862, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253793

RESUMO

DNA double strand breaks (DSBs) pose a high risk for genome integrity. Cells repair DSBs through homologous recombination (HR) when a sister chromatid is available. HR is upregulated by the cycling dependent kinase (CDK) despite the paradox of telophase, where CDK is high but a sister chromatid is not nearby. Here we study in the budding yeast the response to DSBs in telophase, and find they activate the DNA damage checkpoint (DDC), leading to a telophase-to-G1 delay. Outstandingly, we observe a partial reversion of sister chromatid segregation, which includes approximation of segregated material, de novo formation of anaphase bridges, and coalescence between sister loci. We finally show that DSBs promote a massive change in the dynamics of telophase microtubules (MTs), together with dephosphorylation and relocalization of kinesin-5 Cin8. We propose that chromosome segregation is not irreversible and that DSB repair using the sister chromatid is possible in telophase.


Assuntos
Cromátides/metabolismo , Segregação de Cromossomos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Fúngico/genética , Troca de Cromátide Irmã , Telófase/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
ACS Chem Biol ; 13(8): 1950-1957, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29878754

RESUMO

Naphthoquinones are among the most active natural products obtained from plants and microorganisms. Naphthoquinones exert their biological activities through pleiotropic mechanisms that include reactivity against cell nucleophiles, generation of reactive oxygen species (ROS), and inhibition of proteins. Here, we report a mechanistic antiproliferative study performed in the yeast Saccharomyces cerevisiae for several derivatives of three important natural naphthoquinones: lawsone, juglone, and ß-lapachone. We have found that (i) the free hydroxyl group of lawsone and juglone modulates toxicity; (ii) lawsone and juglone derivatives differ in their mechanisms of action, with ROS generation being more important for the former; and (iii) a subset of derivatives possess the capability to disrupt mitochondrial function, with ß-lapachones being the most potent compounds in this respect. In addition, we have cross-compared yeast results with antibacterial and antitumor activities. We discuss the relationship between the mechanistic findings, the antiproliferative activities, and the physicochemical properties of the naphthoquinones.


Assuntos
Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Naftoquinonas/química , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
10.
G3 (Bethesda) ; 7(10): 3379-3391, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28839115

RESUMO

Topoisomerase II (Top2) is an essential protein that resolves DNA catenations. When Top2 is inactivated, mitotic catastrophe results from massive entanglement of chromosomes. Top2 is also the target of many first-line anticancer drugs, the so-called Top2 poisons. Often, tumors become resistant to these drugs by acquiring hypomorphic mutations in the genes encoding Top2 Here, we have compared the cell cycle and nuclear segregation of two coisogenic Saccharomyces cerevisiae strains carrying top2 thermosensitive alleles that differ in their resistance to Top2 poisons: the broadly-used poison-sensitive top2-4 and the poison-resistant top2-5 Furthermore, we have performed genome-scale synthetic genetic array (SGA) analyses for both alleles under permissive conditions, chronic sublethal Top2 downregulation, and acute, yet transient, Top2 inactivation. We find that slowing down mitotic progression, especially at the time of execution of the mitotic exit network (MEN), protects against Top2 deficiency. In all conditions, genetic protection was stronger in top2-5; this correlated with cell biology experiments in this mutant, whereby we observed destabilization of both chromatin and ultrafine anaphase bridges by execution of MEN and cytokinesis. Interestingly, whereas transient inactivation of the critical MEN driver Cdc15 partly suppressed top2-5 lethality, this was not the case when earlier steps within anaphase were disrupted; i.e., top2-5 cdc14-1 We discuss the basis of this difference and suggest that accelerated progression through mitosis may be a therapeutic strategy to hypersensitize cancer cells carrying hypomorphic mutations in TOP2.


Assuntos
Citocinese , DNA Topoisomerases Tipo II/deficiência , Saccharomyces cerevisiae/citologia , DNA Topoisomerases Tipo II/genética , Microscopia de Fluorescência , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA