Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 16(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39205228

RESUMO

The most prevalent arthropod-borne viruses, including the dengue viruses, are primarily transmitted by infected mosquitoes. However, the dynamics of dengue virus (DENV) infection and dissemination in human skin following Aedes aegypti probing remain poorly understood. We exposed human skin explants to adult female Ae. aegypti mosquitoes following their infection with DENV-2 by intrathoracic injection. Skin explants inoculated with a similar quantity of DENV-2 by a bifurcated needle were used as controls. Quantitative in situ imaging revealed that DENV replication was greatest in keratinocytes in the base of the epidermis, accounting for 50-60% of all infected cells regardless of the route of inoculation. However, DENV inoculation by Ae. aegypti probing resulted in an earlier and increased viral replication in the dermis, infecting twice as many cells at 24 h when compared to needle inoculation. Within the dermis, enhanced replication of DENV by Ae. aegypti infected mosquitoes was mediated by increased local recruitment of skin-resident macrophages, dermal dendritic cells, and epidermal Langerhans cells relative to needle inoculation. An enhanced but less pronounced influx of resident myeloid cells to the site of mosquito probing was also observed in the absence of infection. Ae. aegypti probing also increased recruitment and infection of dermal mast cells. Our findings reveal for the first time that keratinocytes are the primary targets of DENV infection following Ae. aegypti inoculation, even though most of the virus is inoculated into the dermis during probing. The data also show that mosquito probing promotes the local recruitment and infection of skin-resident myeloid cells in the absence of an intact vasculature, indicating that influx of blood-derived neutrophils is not an essential requirement for DENV spread within and out of skin.


Assuntos
Aedes , Vírus da Dengue , Dengue , Mosquitos Vetores , Células Mieloides , Pele , Replicação Viral , Aedes/virologia , Vírus da Dengue/fisiologia , Animais , Humanos , Pele/virologia , Células Mieloides/virologia , Dengue/virologia , Dengue/transmissão , Mosquitos Vetores/virologia , Feminino , Queratinócitos/virologia , Macrófagos/virologia
2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559148

RESUMO

The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.

3.
Heliyon ; 10(6): e27934, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545168

RESUMO

Ilhéus virus (ILHV)(Flaviviridae:Orthoflavivirus) is an arthropod-borne virus (arbovirus) endemic to Central and South America and the Caribbean. First isolated in 1944, most of our knowledge derives from surveillance and seroprevalence studies. These efforts have detected ILHV in a broad range of mosquito and vertebrate species, including humans, but laboratory investigations of pathogenesis and vector competence have been lacking. Here, we develop an immune intact murine model with several ages and routes of administration. Our model closely recapitulates human neuroinvasive disease with ILHV strain- and mouse age-specific virulence, as well as a uniformly lethal Ifnar-/- A129 immunocompromised model. Replication kinetics in several vertebrate and invertebrate cell lines demonstrate that ILHV is capable of replicating to high titers in a wide variety of potential host and vector species. Lastly, vector competence studies provide strong evidence for efficient infection of and potential transmission by Aedes species mosquitoes, despite ILHV's phylogenetically clustering with Culex vectored flaviviruses, suggesting ILHV is poised for emergence in the neotropics.

4.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463973

RESUMO

During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary: Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.

5.
Nat Commun ; 15(1): 2682, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538621

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.


Assuntos
Aedes , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia
6.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328060

RESUMO

Zika virus (ZIKV) causes human testicular inflammation and alterations in sperm parameters and causes testicular damage in mouse models. The involvement of individual immune cells in testicular damage is not fully understood. We detected virus in the testes of the interferon (IFN) α/ß receptor -/- A129 mice three weeks post-infection and found elevated chemokines in the testes, suggesting chronic inflammation and long-term infection play a role in testicular damage. In the testes, myeloid cells and CD4 + T cells were absent at 7 dpi but were present at 23 days post-infection (dpi), and CD8 + T cell infiltration started at 7 dpi. CD8 -/- mice with an antibody-depleted IFN response had a significant reduction in spermatogenesis, indicating that CD8 + T cells are essential to prevent testicular damage during long-term ZIKV infections. Our findings on the dynamics of testicular immune cells and importance of CD8 + T cells functions as a framework to understand mechanisms underlying observed inflammation and sperm alterations in humans.

8.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425901

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.

9.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996041

RESUMO

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Assuntos
Aedes , Culicidae , Dengue , Flavivirus , Animais , Humanos , Flavivirus/genética , RNA Subgenômico , Saliva/metabolismo , Regiões 3' não Traduzidas , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
10.
PLoS Pathog ; 18(6): e1010658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759511

RESUMO

Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.


Assuntos
Infecções por Henipavirus , Estomatite Vesicular , Vacinas Virais , Animais , Modelos Animais de Doenças , Vacinas contra Ebola , Glicoproteínas/genética , Doença pelo Vírus Ebola/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Vírus Nipah/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Estomatite Vesicular/prevenção & controle , Vacinas Virais/efeitos adversos
11.
Viruses ; 14(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35458395

RESUMO

Chronic conditions like type II diabetes (T2DM) have long been known to exacerbate many infectious diseases. For many arboviruses, including Zika virus (ZIKV), severe outcomes, morbidity and mortality usually only occur in patients with such pre-existing conditions. However, the effects of T2DM and other pre-existing conditions on human blood (e.g., hypo/hyperinsulinemia, hyperglycemia and hyperlipidemia) that may impact infectivity of arboviruses for vectors is largely unexplored. We investigated whether the susceptibility of Aedes aegypti mosquitoes was affected when the mosquitoes fed on "diabetic" bloodmeals, such as bloodmeals composed of artificially glycosylated erythrocytes or those from viremic, diabetic mice (LEPRDB/DB). Increasing glycosylation of erythrocytes from hemoglobin A1c (HgbA1c) values of 5.5-5.9 to 6.2 increased the infection rate of a Galveston, Texas strain of Ae. aegypti to ZIKV strain PRVABC59 at a bloodmeal titer of 4.14 log10 FFU/mL from 0.0 to 40.9 and 42.9%, respectively. ZIKV was present in the blood of viremic LEPRDB/DB mice at similar levels as isogenic control C57BL/6J mice (3.3 log10 FFU/mL and 3.6 log10 FFU/mL, respectively. When mice sustained a higher ZIKV viremia of 4.6 log10 FFU/mL, LEPRDB/DB mice infected 36.3% of mosquitoes while control C57BL/6J mice with a viremia of 4.2 log10 FFU/mL infected only 4.1%. Additionally, when highly susceptible Ae. aegypti Rockefeller mosquitoes fed on homozygous LEPRDB/DB, heterozygous LEPRWT/DB, and control C57BL/6J mice with viremias of ≈ 4 log10 FFU/mL, 54%, 15%, and 33% were infected, respectively. In total, these data suggest that the prevalence of T2DM in a population may have a significant impact on ZIKV transmission and indicates the need for further investigation of the impacts of pre-existing metabolic conditions on arbovirus transmission.


Assuntos
Aedes , Arbovírus , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores , Viremia
12.
Artigo em Inglês | MEDLINE | ID: mdl-35262074

RESUMO

Background: Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas. There are no approved vaccines or antivirals. TC-83 and V3526 are the best-characterized vaccine candidates for VEEV. Both are live-attenuated vaccines and have been associated with safety concerns, albeit less so for V3526. A previous attempt to improve the TC-83 vaccine focused on further attenuating the vaccine by adding mutations that altered the error incorporation rate of the RNA-dependent RNA polymerase (RdRp). Methods: The research presented here examines the impact of these RdRp mutations in V3526 by cloning the 3X and 4X strains, assessing vaccine efficacy against challenge in adult female CD-1 mice, examining neutralizing antibody titers, investigating vaccine tissue tropism, and testing the stability of the mutant strains. Results: Our results show that the V3526 RdRp mutants exhibited reduced tissue tropism in the spleen and kidney compared to wild-type V3526, while maintaining vaccine efficacy. Illumina sequencing showed that the RdRp mutations could revert to wild-type V3526. Conclusions: The observed genotypic reversion is likely of limited concern because wild-type V3526 is still an effective vaccine capable of providing protection. Our results indicate that the V3526 RdRp mutants may be a safer vaccine design than the original V3526.

13.
Microorganisms ; 9(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204370

RESUMO

The COVID-19 pandemic continues to affect millions of people worldwide. Although SARS-CoV-2 is a respiratory virus, there is growing concern that the disease could cause damage and pathology outside the lungs, including in the genital tract. Studies suggest that SARS-CoV-2 infection can damage the testes and reduce testosterone levels, but the underlying mechanisms are unknown and evidence of virus replication in testicular cells is lacking. We infected golden Syrian hamsters intranasally, a model for mild human COVID-19, and detected viral RNA in testes samples without histopathological changes up to one month post-infection. Using an ex vivo infection model, we detected SARS-CoV-2 replication in hamster testicular cells. Taken together, our data raise the possibility that testes damage observed in severe cases of COVID-19 could be partly explained by direct SARS-CoV-2 infection of the testicular cells.

14.
Nat Commun ; 12(1): 4636, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330906

RESUMO

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Vacinas Virais/imunologia , Adolescente , Adulto , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/fisiologia , Citocinas/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Fadiga/induzido quimicamente , Feminino , Cefaleia/induzido quimicamente , Humanos , Imunoglobulina G/imunologia , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinação/métodos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Adulto Jovem
15.
Nat Commun ; 12(1): 595, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500409

RESUMO

Zika virus (ZIKV) emerged from obscurity in 2013 to spread from Asia to the South Pacific and the Americas, where millions of people were infected, accompanied by severe disease including microcephaly following congenital infections. Phylogenetic studies have shown that ZIKV evolved in Africa and later spread to Asia, and that the Asian lineage is responsible for the recent epidemics in the South Pacific and Americas. However, the reasons for the sudden emergence of ZIKV remain enigmatic. Here we report evolutionary analyses that revealed four mutations, which occurred just before ZIKV introduction to the Americas, represent direct reversions of previous mutations that accompanied earlier spread from Africa to Asia and early circulation there. Our experimental infections of Aedes aegypti mosquitoes, human cells, and mice using ZIKV strains with and without these mutations demonstrate that the original mutations reduced fitness for urban, human-amplifed transmission, while the reversions restored fitness, increasing epidemic risk. These findings include characterization of three transmission-adaptive ZIKV mutations, and demonstration that these and one identified previously restored fitness for epidemic transmission soon before introduction into the Americas. The initial mutations may have followed founder effects and/or drift when the virus was introduced decades ago into Asia.


Assuntos
Epidemias , Evolução Molecular , Aptidão Genética , Infecção por Zika virus/epidemiologia , Zika virus/genética , Aedes/virologia , África/epidemiologia , América/epidemiologia , Substituição de Aminoácidos , Animais , Ásia/epidemiologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fibroblastos , Humanos , Queratinócitos , Camundongos , Mutação , Filogenia , Cultura Primária de Células , Saúde da População Urbana/estatística & dados numéricos , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
16.
Virology ; 552: 94-106, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33120225

RESUMO

Drugs against flaviviruses such as dengue (DENV) and Zika (ZIKV) virus are urgently needed. We previously demonstrated that three fluoroquinolones, ciprofloxacin, enoxacin, and difloxacin, suppress replication of six flaviviruses. To investigate the barrier to resistance and mechanism(s) of action of these drugs, DENV-4 was passaged in triplicate in HEK-293 cells in the presence or absence of each drug. Resistance to ciprofloxacin was detected by the seventh passage and to difloxacin by the tenth, whereas resistance to enoxacin did not occur within ten passages. Two putative resistance-conferring mutations were detected in the envelope gene of ciprofloxacin and difloxacin-resistant DENV-4. In the absence of ciprofloxacin, ciprofloxacin-resistant viruses sustained a significantly higher viral titer than control viruses in HEK-293 and HuH-7 cells and resistant viruses were more stable than control viruses at 37 °C. These results suggest that the mechanism of action of ciprofloxacin and difloxacin involves interference with virus binding or entry.


Assuntos
Evolução Biológica , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Dengue/virologia , Fluoroquinolonas/farmacologia , Aptidão Genética/efeitos dos fármacos , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Adaptação Biológica , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacologia , Farmacorresistência Viral , Enoxacino/farmacologia , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação , Células Vero , Envelope Viral/fisiologia
17.
Front Immunol ; 11: 591885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224148

RESUMO

Mayaro (MAYV) and chikungunya viruses (CHIKV) are vector-borne arthritogenic alphaviruses that cause acute febrile illnesses. CHIKV is widespread and has recently caused large urban outbreaks, whereas the distribution of MAYV is restricted to tropical areas in South America with small and sporadic outbreaks. Because MAYV and CHIKV are closely related and have high amino acid similarity, we investigated whether vaccination against one could provide cross-protection against the other. We vaccinated A129 mice (IFNAR -/-) with vaccines based on chimpanzee adenoviral vectors encoding the structural proteins of either MAYV or CHIKV. ChAdOx1 May is a novel vaccine against MAYV, whereas ChAdOx1 Chik is a vaccine against CHIKV already undergoing early phase I clinical trials. We demonstrate that ChAdOx1 May was able to afford full protection against MAYV challenge in mice, with most samples yielding neutralizing PRNT80 antibody titers of 1:258. ChAdOx1 May also provided partial cross-protection against CHIKV, with protection being assessed using the following parameters: survival, weight loss, foot swelling and viremia. Reciprocally, ChAdOx1 Chik vaccination reduced MAYV viral load, as well as morbidity and lethality caused by this virus, but did not protect against foot swelling. The cross-protection observed is likely to be, at least in part, secondary to cross-neutralizing antibodies induced by both vaccines. In summary, our findings suggest that ChAdOx1 Chik and ChAdOx1 May vaccines are not only efficacious against CHIKV and MAYV, respectively, but also afford partial heterologous cross-protection.


Assuntos
Adenoviridae , Infecções por Alphavirus/prevenção & controle , Alphavirus/imunologia , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/imunologia , Vetores Genéticos , Vacinas Virais , Adenoviridae/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Pan troglodytes , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
18.
Viruses ; 12(9)2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933138

RESUMO

Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at low micromolar concentrations. Time-of-addition assays suggested that enoxacin suppressed ZIKV replication at an intermediate step in the virus life cycle, whereas ciprofloxacin and difloxacin had a wider window of efficacy. A129 mice infected with 1 × 105 plaque-forming units (pfu) ZIKV FSS13025 (n = 20) or phosphate buffered saline (PBS) (n = 11) on day 0 and treated with enoxacin at 10 mg/kg or 15 mg/kg or diluent orally twice daily on days 1-5 did not differ in weight change or virus titer in serum or brain. However, mice treated with enoxacin showed a significant, five-fold decrease in ZIKV titer in testes relative to controls. Mice infected with 1 × 102 pfu ZIKV (n = 13) or PBS (n = 13) on day 0 and treated with 15 mg/kg oral enoxacin or diluent twice daily pre-treatment and days 1-5 post-treatment also did not differ in weight and viral load in the serum, brain, and liver, but mice treated with enoxacin showed a significant, 2.5-fold decrease in ZIKV titer in testes relative to controls. ZIKV can be sexually transmitted, so reduction of titer in the testes by enoxacin should be further investigated.


Assuntos
Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacologia , Dengue , Vírus da Dengue/efeitos dos fármacos , Enoxacino/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Testículo/virologia , Carga Viral , Zika virus/efeitos dos fármacos
19.
Microorganisms ; 8(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752150

RESUMO

Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.

20.
Proc Natl Acad Sci U S A ; 117(33): 20190-20197, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747564

RESUMO

Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.


Assuntos
Epidemias , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , Animais , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Filogenia , Gravidez , Carga Viral , Virulência , Zika virus/fisiologia , Infecção por Zika virus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA