RESUMO
Biallelic loss-of-function (LOF) mutations of the NCF4 gene, encoding the p40phox subunit of the phagocyte NADPH oxidase, have been described in only 1 patient. We report on 24 p40phox-deficient patients from 12 additional families in 8 countries. These patients display 8 different in-frame or out-of-frame mutations of NCF4 that are homozygous in 11 of the families and compound heterozygous in another. When overexpressed in NB4 neutrophil-like cells and EBV-transformed B cells in vitro, the mutant alleles were found to be LOF, with the exception of the p.R58C and c.120_134del alleles, which were hypomorphic. Particle-induced NADPH oxidase activity was severely impaired in the patients' neutrophils, whereas PMA-induced dihydrorhodamine-1,2,3 (DHR) oxidation, which is widely used as a diagnostic test for chronic granulomatous disease (CGD), was normal or mildly impaired in the patients. Moreover, the NADPH oxidase activity of EBV-transformed B cells was also severely impaired, whereas that of mononuclear phagocytes was normal. Finally, the killing of Candida albicans and Aspergillus fumigatus hyphae by neutrophils was conserved in these patients, unlike in patients with CGD. The patients suffer from hyperinflammation and peripheral infections, but they do not have any of the invasive bacterial or fungal infections seen in CGD. Inherited p40phox deficiency underlies a distinctive condition, resembling a mild, atypical form of CGD.
Assuntos
Doença Granulomatosa Crônica/genética , Mutação com Perda de Função , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/metabolismo , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Linhagem , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fenótipo , Fosfoproteínas/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução Genética , Adulto JovemRESUMO
Germinal heterozygous activating STAT3 mutations represent a novel monogenic defect associated with multi-organ autoimmune disease and, in some cases, severe growth retardation. By using whole-exome sequencing, we identified two novel STAT3 mutations, p.E616del and p.C426R, in two unrelated pediatric patients with IGF-I deficiency and immune dysregulation. The functional analyses showed that both variants were gain-of-function (GOF), although they were not constitutively phosphorylated. They presented differences in their dephosphorylation kinetics and transcriptional activities under interleukin-6 stimulation. Both variants increased their transcriptional activities in response to growth hormone (GH) treatment. Nonetheless, STAT5b transcriptional activity was diminished in the presence of STAT3 GOF variants, suggesting a disruptive role of STAT3 GOF variants in the GH signaling pathway. This study highlights the broad clinical spectrum of patients presenting activating STAT3 mutations and explores the underlying molecular pathway responsible for this condition, suggesting that different mutations may drive increased activity by slightly different mechanisms.
Assuntos
Células Germinativas/metabolismo , Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Doenças do Sistema Imunitário/genética , Fator de Crescimento Insulin-Like I/deficiência , Mutação/genética , Fator de Transcrição STAT3/genética , Sequência de Aminoácidos , Pré-Escolar , Feminino , Células HEK293 , Hormônio do Crescimento Humano/farmacologia , Humanos , Lactente , Recém-Nascido , Fator de Crescimento Insulin-Like I/genética , Interleucina-5/metabolismo , Luciferases/metabolismo , Masculino , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Transcrição Gênica/efeitos dos fármacos , Sequenciamento do ExomaRESUMO
UNLABELLED: The signal transducer and activator of transcription (STAT) family of proteins regulate gene transcription in response to a variety of cytokines. STAT5B, in particular, plays an important role in T cells, where it is a key mediator of interleukin-2 (IL-2) induced responses. STAT5B deficiency causes a rare autosomal recessive disorder reported in only a handful of individuals. There are currently ten published cases of STAT5B deficiency, four of which are Argentinians. AIM: This is a report of more than 10 years follow up of the clinical and immunological features of three Argentinian STAT5B deficient patients. CONCLUSION: More than a decade of follow-up demonstrates that STAT5B deficiency is associated with various clinical pathologies that cause significant morbidity. Early diagnosis is critical for the prevention and improvement of clinical outcomes for STAT5B deficient patients.