Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496558

RESUMO

Genes encoding long non-coding RNAs (lncRNAs) comprise a large fraction of the human genome, yet haploinsufficiency of a lncRNA has not been shown to cause a Mendelian disease. CHASERR is a highly conserved human lncRNA adjacent to CHD2-a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here we report three unrelated individuals each harboring an ultra-rare heterozygous de novo deletion in the CHASERR locus. We report similarities in severe developmental delay, facial dysmorphisms, and cerebral dysmyelination in these individuals, distinguishing them from the phenotypic spectrum of CHD2 haploinsufficiency. We demonstrate reduced CHASERR mRNA expression and corresponding increased CHD2 mRNA and protein in whole blood and patient-derived cell lines-specifically increased expression of the CHD2 allele in cis with the CHASERR deletion, as predicted from a prior mouse model of Chaserr haploinsufficiency. We show for the first time that de novo structural variants facilitated by Alu-mediated non-allelic homologous recombination led to deletion of a non-coding element (the lncRNA CHASERR) to cause a rare syndromic neurodevelopmental disorder. We also demonstrate that CHD2 has bidirectional dosage sensitivity in human disease. This work highlights the need to carefully evaluate other lncRNAs, particularly those upstream of genes associated with Mendelian disorders.

2.
G3 (Bethesda) ; 14(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38124489

RESUMO

Mutations in the phosphatidylinositol glycan biosynthesis class A (PIGA) gene cause a rare, X-linked recessive congenital disorder of glycosylation. Phosphatidylinositol glycan biosynthesis class A congenital disorder of glycosylation (PIGA-CDG) is characterized by seizures, intellectual and developmental delay, and congenital malformations. The PIGA gene encodes an enzyme involved in the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis. There are over 100 GPI-anchored proteins that attach to the cell surface and are involved in cell signaling, immunity, and adhesion. Little is known about the pathophysiology of PIGA-CDG. Here, we describe the first Drosophila model of PIGA-CDG and demonstrate that loss of PIG-A function in Drosophila accurately models the human disease. As expected, complete loss of PIG-A function is larval lethal. Heterozygous null animals appear healthy but, when challenged, have a seizure phenotype similar to what is observed in patients. To identify the cell-type specific contributions to disease, we generated neuron- and glia-specific knockdown of PIG-A. Neuron-specific knockdown resulted in reduced lifespan and a number of neurological phenotypes but no seizure phenotype. Glia-knockdown also reduced lifespan and, notably, resulted in a very strong seizure phenotype. RNA sequencing analyses demonstrated that there are fundamentally different molecular processes that are disrupted when PIG-A function is eliminated in different cell types. In particular, loss of PIG-A in neurons resulted in upregulation of glycolysis, but loss of PIG-A in glia resulted in upregulation of protein translation machinery. Here, we demonstrate that Drosophila is a good model of PIGA-CDG and provide new data resources for future study of PIGA-CDG and other GPI anchor disorders.


Assuntos
Drosophila , Glicosilfosfatidilinositóis , Animais , Humanos , Glicosilação , Fosfatidilinositóis , Fenótipo , Convulsões/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA