Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Braz J Microbiol ; 54(3): 1865-1873, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572180

RESUMO

INTRODUCTION: Millions of passengers around the world are concerned with the possibility of SARS-CoV-2 contamination on public transportation. Therefore, this study aimed to investigate the presence of SARS-CoV-2 virus in indoor air and subway surfaces in Mashhad. METHODS: In this study, air and surface sampling were done at two times in the morning (7-8:30 a.m.) and evening (3:30-5 p.m.), simultaneously in two wagons for men and women in line 1 of Mashhad Metro in March 2021 to detect the virus and measure the concentration of particulate matter. Totally, 30 air and 30 metro samples were collected and examined by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: The results showed that three and two cases in the air and surface samples were infected with the SARS-CoV-2 virus, respectively. There was a significant relationship between the mean concentration of suspended particles PM1 (particulate matter smaller than 1 µm) with PM2.5 (particulate matter smaller than 2.5 µm) and PM10 (particulate matter smaller than 10 µm) (p < 0. 05). There was also a significant relationship between the mean concentration of suspended particles PM2.5 and PM10. The results showed that the mean PM2.5 measured in the indoor air of the Mashhad metro wagon had a significant relationship with WHO and US EPA and national standards, and its value was higher than the standards (p < 0.05). The average particle concentrations of PM1, PM2.5, and PM10 were equal to 40.46, 42.61, and 48.31 µg/m3. CONCLUSION: According to the results of the pollution detected in this study, COVID-19 may be transmitted by air and environmental surfaces. Our study emphasizes the need for continuous assessment of the presence of the virus in public transportation. Detection of viral RNA in subways indicates the necessity of adequate disinfection in public settings, strictness in disinfection methods, strengthening of educational activities for sanitary measures, physical spacing plan, and increasing ventilation of wagons.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Ferrovias , Masculino , Feminino , Humanos , Poluentes Atmosféricos/análise , SARS-CoV-2 , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Irã (Geográfico)/epidemiologia , Material Particulado/análise
2.
Sci Total Environ ; 881: 163522, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37068672

RESUMO

In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Fluoroquinolonas , Oxirredução , Água , Purificação da Água/métodos , Antibacterianos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/química
3.
Biosensors (Basel) ; 13(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36831958

RESUMO

The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Nanotubos de Carbono , Nanotecnologia
4.
Environ Sci Pollut Res Int ; 30(6): 14630-14640, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161559

RESUMO

In this study, simultaneous removal of an organic matter (diazinon, DIZ) and an inorganic substance (chromium, Cr) was used. Breaking down of organic matter by UV irradiation produces various radicals, including sulfides, carboxyl, hydroxyl, hydrated electrons, and various organic radicals that are highly reactive and help us to precipitation inorganic substance (Cr). The optimal condition was 30:1 DIZ:Cr molar ratio, pH 9, and about 100% and 82.3% of DIZ and Cr were obtained in 30 min. Cr deposition was very slow at first. After the destruction of the DIZ structure, Cr deposition began, and various types of sludge with disturbed properties were formed. These sledges were analyzed by FTIR analysis and showed that green sludge could be chromium (III) hydroxide; brown sludge due to chromium (III) hydroxide, tiny green crystals from chromium (III) oxide, red brick from chromium (II) acetate chromium trioxide, as well as black sludge caused by chromium oxide were identified. In UV/DIZ/Cr process, kobs and robs range obtained 0.33-0.15 and 16.8-23.4 $ with both Cr and DIZ concentration increased from 50 to 150 mg L-1. Also, EEO for Cr precipitation was 24.65 to 5.74 and for DIZ 12.54 to 4.73 (kwh m-3). Depending on the amount of energy consumption, TCS was 37.19 to 10.47 for Cr precipitation and 4.46 to 1.25 $. It is important to note that when both pollutants are exposed to ultraviolet light, more energy and cost are generally required from UV/DIZ process and less than of UV/Cr process. But it should be noted that in fact 50 mg L-1 of chromium and 50 mg L-1 of DIZ are being removed at the same time. In UV/DIZ and UV/Cr processes that are exposed to ultraviolet radiation alone, only one of them is removed. Also, when these two pollutants are being removed at the same time, the total amount of energy is much less than the total energy consumption of the pollutants one by one.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Esgotos/química , Fotólise , Diazinon , Raios Ultravioleta , Oxirredução , Cromo/química , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
5.
ACS Omega ; 7(36): 31658-31666, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120056

RESUMO

Nanoparticles possess several properties, such as antimicrobial, anti-inflammatory, wound healing, catalytic, magnetic, optical, and electronic properties, that have allowed them to be used in different fields. Among them, zinc oxide (ZnO) has received copious consideration due to its technological and medicinal applications. Plant-mediated synthesis of ZnO nanoparticles has provided a cost-effective and eco-friendly method. Therefore, the objective of the study is to assess the effect of the precursor concentration and silver and cerium doping on the optical properties of ZnO nanoparticles synthesized via a green process using bush tea leaf extract as the chelating agent. Zinc nitrate hexahydrate was used as the precursor. Quasi-spherical-shaped ZnO nanoparticles were obtained with an average crystallite size ranging between 24.53 and 63.02 nm. The crystallite size was found to decrease with the increase of precursor concentration at 43.82 nm (0.05 g), 37.25 nm (0.10 g), 26.53 nm (0.50 g), and 24.53 nm (1 g); thereafter, the size increases with an increase in precursor concentration. The optimum precursor concentration was 1 g with the smallest grain size and a high purity level. The increase in annealing temperature induced an increase in the crystallite size of ZnO nanoparticles from 24.53 nm (600 °C) to 34.24 nm (800 °C), however, increasing the level of purity of the nanopowders. The band gap energies were 2.75 and 3.17 eV as calculated using the Tauc plot with variations due to the precursor concentrations. Doping with both silver and cerium increased the band gap of ZnO nanoparticles up to 3.19 eV and the increase in annealing temperature slightly augmented the band gap energy from 3.00 and 3.16 eV, respectively. Hence, doping with Ag and Ce induced the formation of nanorods at higher concentrations. This study successfully demonstrated that the natural plant extract of bush tea can be used in the bioreduction of zinc nitrate hexahydrate to prepare pure ZnO nanoparticles, thus extending the use of this plant to the nano producing industry.

6.
ACS Omega ; 7(23): 19141-19151, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721923

RESUMO

Polyethylene terephthalate polymer (PET) is widely used in diverse areas. In the current study, the surface of PET is modified in two steps in order to improve the quality. At first, the polymer was functionalized with carboxylic groups, and Fourier transform infrared spectroscopy studies were used to verify functionalization. Then, AgCl nanoparticles were synthesized on COOH functional groups on the surface of PET using a sonochemistry method by sequential dipping of the functionalized polymer in an alternating bath of potassium chloride and silver nitrate under ultrasonic irradiation. The effects of ultrasonic irradiation power, the number of dipping steps, and pH on the growth of AgCl nanoparticles as effective parameters on size and density of synthesized Ag nanoparticles were studied. The results of scanning electron microscopy studies showed that the size and density of AgCl nanoparticles under ultrasonic irradiation with a power of 100 W are better than those of AgCl nanoparticles under irradiation with a power of 30 W. Also, by 15 times dipping the polymer into the reagent solutions in pH = 9, the modified polymer with a greater number of nanoparticles with suitable size can be reached. Antibacterial properties of PET containing AgCl nanoparticles were investigated against six Gram-positive and Gram-negative bacteria species, and the results showed significant antibacterial activity, while functionalized PET did not have a significant effect on both types of bacteria.

7.
Environ Pollut ; 290: 118048, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479162

RESUMO

The continuous influx of opioid compounds into aquatic environments has become an increasing and persistent concern, due to their extensive use. This is especially alarming as wastewater treatment plants (WWTPs) are unable to completely remove them. Despite the reported health concerns, the occurrence of opioid compounds in the environment has not received much attention. The present study investigates the occurrence of 19 opioids in four WWTPs and their respective receiving water bodies. All wastewater samples revealed opioids at concentration ranging from ng/L to µg/L with most influents having higher concentrations than effluents. WWTPs appeared to perform poorly (p > 0.05 between influents and effluents), and were unable to remove some opioids including Methadone (-27.3%) from the Leeuwkuil WWTP, Codeine (-21.7%) and Thebaine (-3.77%) from the Sandspruit WWTP, and Hydrocodone (-1.06%) from the Meyerton WWTP, respectively. Samples collected from the Leeuwkuil WWTP were the most contaminated, with eighteen out of nineteen opioid analogues exceeding 1 µg/L. Upstream surface water contained less opioids (most < LOQ) than downstream (p < 0.05), with Hydrocodone, Oxycodone, Hydromorphone, Fentanyl, Ketamine and Dihydrocodeine not detected. The occurrence of high concentrations of opioid analogues in downstream surface water (298 ng/L -10.8 µg/L for Klip River, 4.49 ng/L -13.1 µg/L for Vaal River, 70.5 ng/L -10.0 µg/L for Soutspruit River and 8.0 ng/L - 2.43 µg/L for Sun Spruit River) was directly linked to their mass loads in the respective wastewater effluent samples.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Analgésicos Opioides/análise , Monitoramento Ambiental , África do Sul , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
8.
RSC Adv ; 11(5): 3143-3152, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424257

RESUMO

In the present study, we reported the synthesis of a novel quinoline-based dendrimer-like ionic liquid. After characterization of the mentioned ionic liquid with suitable techniques such as Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), elemental mapping, thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG), its catalytic performance was investigated in the synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism under mild reaction conditions. All target molecules were achieved in short reaction times and high yields.

9.
F1000Res ; 10: 1077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36212902

RESUMO

Background: Nanoparticles are globally synthesized for their antimicrobial, anti-inflammatory, wound healing, catalytic, magnetic, optical, and electronic properties that have put them at the forefront of a wide variety of studies. Among them, zinc oxide (ZnO) has received much consideration due to its technological and medicinal applications. In this study, we report on the synthesis process of ZnO nanoparticles using  Athrixia phylicoides DC natural extract as a reducing agent.   Methods: Liquid chromatography-mass spectrometry (LC-MS) was used to identify the compounds responsible for the synthesis of ZnO nanoparticles. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized through X-ray diffraction (XRD), Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS).   Results: LC-MS results showed that different flavonoids and polyphenols, as well as Coumarin, an aromatic compound, reacted with the precursor to form ZnO nanoparticles. XRD and UV-Vis analysis confirmed the synthesis of ZnO nanoparticles, with a spherical shape showed in SEM images. The quasi-spherical ZnO crystals had an average crystallite size of 24 nm. EDS and FTIR analysis confirmed that the powders were pure with no other phase or impurity.   Conclusions: This study successfully demonstrated that the natural plant extract of  A. phylicoides DC. can be used in the bio-reduction of zinc nitrate hexahydrate to prepare pure ZnO nanoparticles, thus, extending the use of this plant to an industrial level.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/química , Substâncias Redutoras , Nanopartículas Metálicas/química , Extratos Vegetais , Cumarínicos , Flavonoides , Chá
10.
PLoS One ; 11(5): e0155462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186636

RESUMO

For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater.


Assuntos
Biofilmes , Reatores Biológicos , Metais Pesados , Águas Residuárias/química , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Biomassa , Microbiota , Controle de Qualidade
11.
ScientificWorldJournal ; 2013: 156870, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24327802

RESUMO

This study was undertaken to evaluate the potential future use of three biological processes in order to designate the most desired solution for on-site treatment of wastewater from residential complexes, that is, conventional activated sludge process (CASP), moving-bed biofilm reactor (MBBR), and packed-bed biofilm reactor (PBBR). Hydraulic retention time (HRT) of 6, 3, and 2 h can be achieved in CASP, MBBR, and PBBR, respectively. The PBBR dealt with a particular arrangement to prevent the restriction of oxygen transfer efficiency into the thick biofilms. The laboratory scale result revealed that the overall reduction of 87% COD, 92% BOD5, 82% TSS, 79% NH3-N, 43% PO4-P, 95% MPN, and 97% TVC at a HRT of 2 h was achieved in PBBR. The microflora present in the system was also estimated through the isolation, identification, and immobilization of the microorganisms with an index of COD elimination. The number of bacterial species examined on the nutrient agar medium was 22 and five bacterial species were documented to degrade the organic pollutants by reducing COD by more than 43%. This study illustrated that the present PBBR with a specific modified internal arrangement could be an ideal practice for promoting sustainable decentralization and therefore providing a low wastage sludge biomass concentration.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Ágar/química , Biofilmes , Análise da Demanda Biológica de Oxigênio , Biomassa , Desenho de Equipamento , Consórcios Microbianos , Compostos Orgânicos/química , Oxigênio/metabolismo , Esgotos , Fatores de Tempo , Águas Residuárias , Microbiologia da Água , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA