Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17116, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048580

RESUMO

This study interprets aeromagnetic data from the Tizi n'Test area in the High Atlas massif of Morocco, aiming to gain insights into its litho-structural architecture and implications for mineral exploration and mining. We employed six different analytical techniques to the residual magnetic field data, including reduction to the pole (RTP), upward continuation, total horizontal derivative, Tilt angle, Centre for Exploration Targeting (CET) analysis, and Euler deconvolution. Our analyses differentiated the study area into three magnetic domains: the eastern Ouzellarh block, characterized by positive anomalies, a central domain characterized by a negative magnetic signature demarcating the transitional zone between the Anti-Atlas and the High Atlas separated by the Ouchden fault: and the western domain, represented by the Tichka massif. The application of total horizontal derivative, tilt angle, and a combination of filters in ternary image formats (Tilt angle, upward continuation 1000 + Tilt angle and upward continuation 3000 + Tilt angle) revealed both known and previously unidentified geological lineaments, mapping structural complexity across various orientations (NE-SW, NNE-SSE, E-W, NW-SE, and N-S). The CET grid analysis method unveiled the structural complexity, highlighting the geodynamic evolution of the region. Particularly, the Ouchden fault delineates a magnetic domain divide between the ancient High Atlas and the Ouzellarh block (Anti-Atlas). Furthermore, Euler deconvolution indicated magnetic source depths ranging from 52 m in the western domain of the Tichka massif to 6560 m in the Ouzellarh block. A comprehensive structural scheme, classified by C-A fractal analysis, identified zones favourable for exploration and mining, particularly along the Ouchden fault, Tizi n'Test, NE-SW trending lineaments in the northwestern domain, as well as along the Tichka granite's margin.

2.
Data Brief ; 46: 108763, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478686

RESUMO

The electrical resistivity tomography (ERT) technique was conducted for the geophysical survey of a landslide on the southern slope of Jbel Tghat, north of the city of Fez, Morocco. Nine electrical resistivity tomography profiles were implemented to: (a) characterize the geometry of the dipping zone; (b) characterize their internal structures; and (c) highlight the faulting zone between the marly deposits and the conglomerate formation. The measured data sets were processed using EarthImager™ 2D (Advanced Geosciences, Inc), and BERT (Boundless Electrical Resistivity Tomography) software packages that offer a simple workflow from data import to inversion and visualization, while offering full control over inversion parameters. Moreover, BERT software is a Python-based open-source inversion software package. Both ERT processing software allows obtaining 2D subsurface electrical models associated with the distribution of the subsurface apparent electrical resistivity property, in Ohm.m units. Those 2D subsurface electrical models are retrieved using the same inversion parameters to determine the distribution of geoelectric layers and their defining parameters (e.g., electrical resistivity, thickness, and depth), giving access to certain characteristics exclusive to one of the two processing techniques, comparing the inversion findings to better understand the process's limits, as well as evaluating the capabilities of the two inversion methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA