Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
FEBS Open Bio ; 12(11): 2065-2082, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097827

RESUMO

Endoplasmic reticulum (ER) stress-dependent accumulation of incorrectly folded proteins leads to activation of the unfolded protein response. The role of the unfolded protein response (UPR) is to avoid cell damage and restore the homeostatic state by autophagy; however, excessive ER stress results in apoptosis. Here we investigated the ER stress-dependent feedback loops inside one of the UPR branches by focusing on PERK-induced ATF4 and its two targets, called CHOP and GADD34. Our goal was to qualitatively describe the dynamic behavior of the system by exploring the key regulatory motifs using both molecular and theoretical biological techniques. Using the HEK293T cell line as a model system, we confirmed that the life-or-death decision is strictly regulated. We investigated the dynamic characteristics of the crucial elements of the PERK pathway at both the RNA and protein level upon tolerable and excessive levels of ER stress. Of particular note, inhibition of GADD34 or CHOP resulted in various phenotypes upon high levels of ER stress. Our computer simulations suggest the existence of two new feedback loops inside the UPR. First, GADD34 seems to have a positive effect on ATF4 activity, while CHOP inhibits it. We claim that these newly described feedback loops ensure the fine-tuning of the ATF4-dependent stress response mechanism of the cell.


Assuntos
Fator 4 Ativador da Transcrição , Estresse do Retículo Endoplasmático , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Células HEK293 , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas
2.
Cell Struct Funct ; 46(1): 1-9, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33361684

RESUMO

The somatic haploidy is unstable in diplontic animals, but cellular processes determining haploid stability remain elusive. Here, we found that inhibition of mevalonate pathway by pitavastatin, a widely used cholesterol-lowering drug, drastically destabilized the haploid state in HAP1 cells. Interestingly, cholesterol supplementation did not restore haploid stability in pitavastatin-treated cells, and cholesterol inhibitor U18666A did not phenocopy haploid destabilization. These results ruled out the involvement of cholesterol in haploid stability. Besides cholesterol perturbation, pitavastatin induced endoplasmic reticulum (ER) stress, the suppression of which by a chemical chaperon significantly restored haploid stability in pitavastatin-treated cells. Our data demonstrate the involvement of the mevalonate pathway in the stability of the haploid state in human somatic cells through managing ER stress, highlighting a novel link between ploidy and ER homeostatic control.Key words: haploid, ER stress, Mevalonate pathway.


Assuntos
Estresse do Retículo Endoplasmático , Homeostase , Linhagem Celular , Colesterol , Haploidia , Humanos
3.
Antioxid Redox Signal ; 34(11): 831-844, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32586104

RESUMO

Significance: Persistent oxidative stress is a common feature of cancer cells, giving a specific weapon to selectively eliminate them. Ascorbate in pharmacological concentration can contribute to the suspended formation of hydroxyl radical via the Fenton reaction; thus, it can be an important element of the oxidative stress therapy against cancer cells. Recent Advances: The main components of ascorbate-induced cell death are DNA double-strand breaks via the production of hydroxyl radical and ATP depletion due to the activation of poly (ADP-ribose) polymerase 1. Presumably, DNA damage can be the primary contributor to the anticancer activity of pharmacological ascorbate, as opposed to the rupture of bioenergetics. The caspase independency of high-dose ascorbate-induced cell death proposed the possible involvement of several types of cell death, such as ferroptosis, necroptosis, and autophagy. Critical Issues: Ascorbate can target at least two key molecular features of cancer cells as a part of the anticancer therapy: the intrinsic or acquired resistance to cell death and the dysregulated metabolism of cancer cells. It seems probable that different concentrations of ascorbate alter the nature of induced cell death. Autophagy and necroptosis may play a role at intermediate concentrations, but caspase-independent apoptosis may dominate at higher concentrations. However, ascorbate behaves as an effective inhibitor of ferroptosis that may have crucial importance in its possible clinical application. Future Directions: The elucidation of the details and the links between high-dose ascorbate-induced cancer selective cell death mechanisms may give us a tool to form and apply synergistic cancer therapies. Antioxid. Redox Signal. 34, 831-844.


Assuntos
Ácido Ascórbico/uso terapêutico , Morte Celular/efeitos dos fármacos , Neoplasias/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Morte Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Humanos , Necroptose/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 10(1): 17803, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082544

RESUMO

Autophagy is an intracellular digestive process, which has a crucial role in maintaining cellular homeostasis by self-eating the unnecessary and/or damaged components of the cell at various stress events. ULK1, one of the key elements of autophagy activator complex, together with the two sensors of nutrient and energy conditions, called mTORC1 and AMPK kinases, guarantee the precise function of cell response mechanism. We claim that the feedback loops of AMPK-mTORC1-ULK1 regulatory triangle determine an accurate dynamical characteristic of autophagic process upon cellular stress. By using both molecular and theoretical biological techniques, here we reveal that a delayed negative feedback loop between active AMPK and ULK1 is essential to manage a proper cellular answer after prolonged starvation or rapamycin addition. AMPK kinase quickly gets induced followed by AMPK-P-dependent ULK1 activation, whereas active ULK1 has a rapid negative effect on AMPK-P resulting in a delayed inhibition of ULK1. The AMPK-P → ULK1 ˧ AMPK-P negative feedback loop results in a periodic repeat of their activation and inactivation and an oscillatory activation of autophagy, as well. We demonstrate that the periodic induction of self-cannibalism is necessary for the proper dynamical behaviour of the control network when mTORC1 is inhibited with respect to various stress events. By computational simulations we also suggest various scenario to introduce "delay" on AMPK-P-dependent ULK1 activation (i.e. extra regulatory element in the wiring diagram or multi-phosphorylation of ULK1).


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Autofagia , Biologia Computacional , Regulação para Baixo , Retroalimentação Fisiológica , Células HEK293 , Humanos , Imunossupressores/farmacologia , Modelos Teóricos , Fosforilação , Transdução de Sinais , Sirolimo/farmacologia , Regulação para Cima
5.
BMC Biol ; 18(1): 19, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101139

RESUMO

BACKGROUND: The lumen of the endoplasmic reticulum (ER) acts as a cellular Ca2+ store and a site for oxidative protein folding, which is controlled by the reduced glutathione (GSH) and glutathione-disulfide (GSSG) redox pair. Although depletion of luminal Ca2+ from the ER provokes a rapid and reversible shift towards a more reducing poise in the ER, the underlying molecular basis remains unclear. RESULTS: We found that Ca2+ mobilization-dependent ER luminal reduction was sensitive to inhibition of GSH synthesis or dilution of cytosolic GSH by selective permeabilization of the plasma membrane. A glutathione-centered mechanism was further indicated by increased ER luminal glutathione levels in response to Ca2+ efflux. Inducible reduction of the ER lumen by GSH flux was independent of the Ca2+-binding chaperone calreticulin, which has previously been implicated in this process. However, opening the translocon channel by puromycin or addition of cyclosporine A mimicked the GSH-related effect of Ca2+ mobilization. While the action of puromycin was ascribable to Ca2+ leakage from the ER, the mechanism of cyclosporine A-induced GSH flux was independent of calcineurin and cyclophilins A and B and remained unclear. CONCLUSIONS: Our data strongly suggest that ER influx of cytosolic GSH, rather than inhibition of local oxidoreductases, is responsible for the reductive shift upon Ca2+ mobilization. We postulate the existence of a Ca2+- and cyclosporine A-sensitive GSH transporter in the ER membrane. These findings have important implications for ER redox homeostasis under normal physiology and ER stress.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Glutationa/metabolismo , Calreticulina/metabolismo , Humanos , Ligação Proteica
6.
FEBS Lett ; 594(6): 1112-1123, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31769869

RESUMO

Scientific results have revealed that autophagy is able to promote cell survival in response to endoplasmic reticulum (ER) stress, while drastic events result in apoptotic cell death. Here, we analyse the important crosstalk of life-and-death decisions from a systems biological perspective by studying the regulatory modules of the unfolded protein response (UPR). While a double-negative loop between autophagy and apoptosis inducers is crucial for the switch-like characteristic of the stress response mechanism, a positive feedback loop between ER stress sensors is also essential. Corresponding to experimental data, here, we show the dynamical significance of Gadd34-CHOP connections inside the PERK branch of the UPR. The multiple system-level feedback loops seem to be crucial for managing a robust life-and-death decision depending on the level and durability of cellular stress.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Modelos Biológicos , Resposta a Proteínas não Dobradas/fisiologia , Retroalimentação , Humanos , Proteína Fosfatase 1/metabolismo , Fator de Transcrição CHOP/metabolismo
7.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771288

RESUMO

Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Glucose-6-Fosfatase/metabolismo , Complexo de Golgi/metabolismo , Humanos
8.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703252

RESUMO

Cellular homeostasis is controlled by an evolutionary conserved cellular digestive process called autophagy. This mechanism is tightly regulated by the two sensor elements called mTORC1 and AMPK. mTORC1 is one of the master regulators of proteostasis, while AMPK maintains cellular energy homeostasis. AMPK is able to promote autophagy by phosphorylating ULK1, the key inducer of autophagosome formation, while mTORC1 downregulates the self-eating process via ULK1 under nutrient rich conditions. We claim that the feedback loops of the AMPK-mTORC1-ULK1 regulatory triangle guarantee the appropriate response mechanism when nutrient and/or energy supply changes. In our opinion, there is an essential double negative feedback loop between mTORC1 and AMPK. Namely, not only does AMPK downregulate mTORC1, but mTORC1 also inhibits AMPK and this inhibition is required to keep AMPK inactive at physiological conditions. The aim of the present study was to explore the dynamical characteristic of AMPK regulation upon various cellular stress events. We approached our scientific analysis from a systems biology perspective by incorporating both theoretical and molecular biological techniques. In this study, we confirmed that AMPK is essential to promote autophagy, but is not sufficient to maintain it. AMPK activation is followed by ULK1 induction, where protein has a key role in keeping autophagy active. ULK1-controlled autophagy is always preceded by AMPK activation. With both ULK1 depletion and mTORC1 hyper-activation (i.e., TSC1/2 downregulation), we demonstrate that a double negative feedback loop between AMPK and mTORC1 is crucial for the proper dynamic features of the control network. Our computer simulations have further proved the dynamical characteristic of AMPK-mTORC1-ULK1 controlled cellular nutrient sensing.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Morte Celular Autofágica/fisiologia , Retroalimentação Fisiológica/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
9.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614497

RESUMO

Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter-intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.


Assuntos
Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Intestino Delgado/enzimologia , Animais , Frutose/metabolismo , Cobaias , Humanos , Microssomos/enzimologia , Ratos , Especificidade da Espécie
10.
Oxid Med Cell Longev ; 2019: 8156592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800210

RESUMO

Ascorbate requiring Fe2+/2-oxoglutarate-dependent dioxygenases located in the nucleoplasm have been shown to participate in epigenetic regulation of gene expression via histone and DNA demethylation. Transport of dehydroascorbic acid is impaired in the endomembranes of fibroblasts from arterial tortuosity syndrome (ATS) patients, due to the mutation in the gene coding for glucose transporter GLUT10. We hypothesized that altered nuclear ascorbate concentration might be present in ATS fibroblasts, affecting dioxygenase activity and DNA demethylation. Therefore, our aim was to characterize the subcellular distribution of vitamin C, the global and site-specific changes in 5-methylcytosine and 5-hydroxymethylcytosine levels, and the effect of ascorbate supplementation in control and ATS fibroblast cultures. Diminished nuclear accumulation of ascorbate was found in ATS fibroblasts upon ascorbate or dehydroascorbic acid addition. Analyzing DNA samples of cultured fibroblasts from controls and ATS patients, a lower global 5-hydroxymethylcytosine level was found in ATS fibroblasts, which could not be significantly modified by ascorbate addition. Investigation of the (hydroxy)methylation status of specific regions in six candidate genes related to ascorbate metabolism and function showed that ascorbate addition could stimulate hydroxymethylation and active DNA demethylation at the PPAR-γ gene region in control fibroblasts only. The altered DNA hydroxymethylation patterns in patient cells both at the global level and at specific gene regions accompanied with decreased nuclear accumulation of ascorbate suggests the epigenetic role of vitamin C in the pathomechanism of ATS. The present findings represent the first example for the role of vitamin C transport in epigenetic regulation suggesting that ATS is a compartmentalization disease.


Assuntos
Artérias/anormalidades , Ácido Ascórbico/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Genoma Humano , Instabilidade Articular/genética , Dermatopatias Genéticas/genética , Malformações Vasculares/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Células Cultivadas , Epigênese Genética , Humanos , Modelos Biológicos , PPAR gama/genética , PPAR gama/metabolismo
11.
FASEB J ; 33(2): 2372-2387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277819

RESUMO

NF-E2-related factor 2 (NRF2) transcription factor has a fundamental role in cell homeostasis maintenance as one of the master regulators of oxidative and electrophilic stress responses. Previous studies have shown that a regulatory connection exists between NRF2 and autophagy during reactive oxygen species-generated oxidative stress. The aim of the present study was to investigate how autophagy is turned off during prolonged oxidative stress, to avoid overeating and destruction of essential cellular components. AMPK is a key cellular energy sensor highly conserved in eukaryotic organisms, and it has an essential role in autophagy activation at various stress events. Here the role of human AMPK and its Caenorhabditis elegans counterpart AAK-2 was explored upon oxidative stress. We investigated the regulatory connection between NRF2 and AMPK during oxidative stress induced by tert-butyl hydroperoxide (TBHP) in HEK293T cells and C. elegans. Putative conserved NRF2/protein skinhead-1 binding sites were found in AMPK/aak-2 genes by in silico analysis and were later confirmed experimentally by using EMSA. After addition of TBHP, NRF2 and AMPK showed a quick activation; AMPK was later down-regulated, however, while NRF2 level remained high. Autophagosome formation and Unc-51-like autophagy activating kinase 1 phosphorylation were initially stimulated, but they returned to basal values after 4 h of TBHP treatment. The silencing of NRF2 resulted in a constant activation of AMPK leading to hyperactivation of autophagy during oxidative stress. We observed the same effects in C. elegans demonstrating the conservation of this self-defense mechanism to save cells from hyperactivated autophagy upon prolonged oxidative stress. We conclude that NRF2 negatively regulates autophagy through delayed down-regulation of the expression of AMPK upon prolonged oxidative stress. This regulatory connection between NRF2 and AMPK may have an important role in understanding how autophagy is regulated in chronic human morbidities characterized by oxidative stress, such as neurodegenerative diseases, certain cancer types, and in metabolic diseases.-Kosztelnik, M., Kurucz, A., Papp, D., Jones, E., Sigmond, T., Barna, J., Traka, M. H., Lorincz, T., Szarka, A., Banhegyi, G., Vellai, T., Korcsmaros, T., Kapuy, O. Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética
12.
PLoS One ; 13(11): e0207949, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485363

RESUMO

Oxidative stress results in activation of several signal transduction pathways controlled by the PERK-substrate NRF2 (nuclear factor erythroid 2-related factor 2); meanwhile the ongoing cell division cycle has to be blocked. It has been recently shown that Cyclin D1 got immediately down-regulated via PERK pathway in response to oxidative stress leading to cell cycle arrest. However, the effect of NRF2 on cell cycle regulation has not been explored yet. We aimed to reveal a crosstalk between PERK-substrate NRF2 and the key elements of cell cycle regulatory network upon oxidative stress using molecular biological techniques- Although Cyclin D1 level remained constant, its activity was blocked by various stoichiometric inhibitors (such as p15, p21 and p27) even at low level of oxidative stress. The activity of these CDK inhibitors completely disappeared, when the addition of oxidative agent was combined with silencing of either PERK or NRF2.This further confirms the important role of NRF2 in blocking Cyclin D1 with stoichiometric inhibitors at early stage of oxidative stress.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Ciclina D1/metabolismo , Células HEK293 , Humanos , eIF-2 Quinase/metabolismo
13.
Pathol Oncol Res ; 24(4): 821-826, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29981013

RESUMO

Glycogen particle is an intracellular organelle, which serves as a carbohydrate reserve in various cells. The function of glycogen is not entirely known in several cell types. Glycogen can be mobilized for different purposes, which can be related to cellular metabolic needs, intracellular redox state, metabolic state of the whole organism depending on regulatory aspects and also on cell functions. Essentially there are two different ways of glycogen degradation localized in different cellular organelles: glycogenolysis or lysosomal breakdown by acid alpha-glucosidase. While glycogenolysis occurs in glycogen particles connected to endoplasmic reticulum membrane, glycogen particles can be also combined with phagophores forming autophagosomes. A subdomain of the endoplasmic reticulum membrane - omegasomes - are the sites for phagophore formation. Thus, three organelles, the endoplasmic reticulum, the phagophore and the glycogen particle forms a triangle in which glycogen degradation occurs. The physiological significance, molecular logic and regulation of the two different catabolic paths are summarized and discussed with special aspect on the role of glycogen particles in intracellular organelle homeostasis and on molecular pathology of the cell. Pathological aspects and some diseases connected to the two different degradation pathways of glycogen particles are also detailed.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Glicogênio/metabolismo , Glicogenólise/fisiologia , Animais , Autofagia/fisiologia , Homeostase/fisiologia , Humanos
14.
Oxid Med Cell Longev ; 2018: 6721530, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636854

RESUMO

The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment) on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.


Assuntos
Catequina/análogos & derivados , Estresse do Retículo Endoplasmático/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Chá/química , Autofagia/efeitos dos fármacos , Catequina/farmacologia , Catequina/uso terapêutico , Sobrevivência Celular , Humanos
15.
Antioxidants (Basel) ; 7(3)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510589

RESUMO

Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5' AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine.

16.
Plant Physiol Biochem ; 126: 39-46, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499434

RESUMO

Ostreococcus tauri is the smallest free-living unicellular organism with one copy of each core cell cycle genes in its genome. There is a growing interest in this green algae due to its evolutionary origin. Since O. tauri is diverged early in the green lineage, relatively close to the ancestral eukaryotic cell, it might hold a key phylogenetic position in the eukaryotic tree of life. In this study, we focus on the regulatory network of its cell division cycle. We propose a mathematical modelling framework to integrate the existing knowledge of cell cycle network of O. tauri. We observe that feedback loop regulation of both G1/S and G2/M transitions in O. tauri is conserved, which can make the transition bistable. This is essential to make the transition irreversible as shown in other eukaryotic organisms. By performing sequence analysis, we also predict the presence of the Greatwall/PP2A pathway in the cell cycle of O. tauri. Since O. tauri cell cycle machinery is conserved, the exploration of the dynamical characteristic of the cell division cycle will help in further understanding the regulation of cell cycle in higher eukaryotes.


Assuntos
Clorófitas/metabolismo , Fase G1/fisiologia , Fase G2/fisiologia , Redes Reguladoras de Genes/fisiologia , Clorófitas/genética
17.
PLoS One ; 12(9): e0185687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957417

RESUMO

Pancreatic cancer is an increasing cause of cancer related death worldwide. KRAS is the dominant oncogene in this cancer type and molecular rationale would indicate, that inhibitors of the downstream target MEK could be appropriate targeted agents, but clinical trials have failed so far to achieve statistically significant benefit in unselected patients. We aimed to identify predictive molecular biomarkers that can help to define subgroups where MEK inhibitors might be beneficial alone or in combination. Next-generation sequencing data of 50 genes in three pancreatic cancer cell lines (MiaPaCa2, BxPC3 and Panc1) were analyzed and compared to the molecular profile of 138 clinical pancreatic cancer samples to identify the molecular subtypes of pancreatic cancer these cell lines represent. Luminescent cell viability assay was used to determine the sensitivity of cell lines to kinase inhibitors. Western blot was used to analyze the pathway activity of the examined cell lines. According to our cell viability and pathway activity data on these model cell lines only cells harboring the rare G12C KRAS mutation and low EGFR expression are sensitive to single MEK inhibitor (trametinib) treatment. The common G12D KRAS mutation leads to elevated baseline Akt activity, thus treatment with single MEK inhibitors fails. However, combination of MEK and Akt inhibitors are synergistic in this case. In case of wild-type KRAS and high EGFR expression MEK inhibitor induced Akt phosphorylation leads to trametinib resistance which necessitates for MEK and EGFR or Akt inhibitor combination treatment. In all we provide strong preclinical rational and possible molecular mechanism to revisit MEK inhibitor therapy in pancreatic cancer in both monotherapy and combination, based on molecular profile analysis of pancreatic cancer samples and cell lines. According to our most remarkable finding, a small subgroup of patients with G12C KRAS mutation may still benefit from MEK inhibitor monotherapy.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Genes ras , Humanos , Mutação , Neoplasias Pancreáticas/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Transdução de Sinais
18.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829359

RESUMO

GLUT10 belongs to a family of transporters that catalyze the uptake of sugars/polyols by facilitated diffusion. Loss-of-function mutations in the SLC2A10 gene encoding GLUT10 are responsible for arterial tortuosity syndrome (ATS). Since subcellular distribution of the transporter is dubious, we aimed to clarify the localization of GLUT10. In silico GLUT10 localization prediction suggested its presence in the endoplasmic reticulum (ER). Immunoblotting showed the presence of GLUT10 protein in the microsomal, but not in mitochondrial fractions of human fibroblasts and liver tissue. An even cytosolic distribution with an intense perinuclear decoration of GLUT10 was demonstrated by immunofluorescence in human fibroblasts, whilst mitochondrial markers revealed a fully different decoration pattern. GLUT10 decoration was fully absent in fibroblasts from three ATS patients. Expression of exogenous, tagged GLUT10 in fibroblasts from an ATS patient revealed a strict co-localization with the ER marker protein disulfide isomerase (PDI). The results demonstrate that GLUT10 is present in the ER.


Assuntos
Artérias/anormalidades , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Instabilidade Articular/metabolismo , Dermatopatias Genéticas/metabolismo , Malformações Vasculares/metabolismo , Artérias/metabolismo , Imunofluorescência , Humanos , Espaço Intracelular/metabolismo , Instabilidade Articular/genética , Microssomos/metabolismo , Ligação Proteica , Transporte Proteico , Dermatopatias Genéticas/genética , Malformações Vasculares/genética
19.
Nutrients ; 9(5)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28445389

RESUMO

The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11ß-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11ß-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.


Assuntos
Tecido Adiposo/fisiologia , Frutose/farmacologia , Glucocorticoides/metabolismo , Síndrome Metabólica/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos
20.
Int J Mol Sci ; 18(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067773

RESUMO

Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) leads to the activation of three branches (Protein kinase (RNA)-like endoplasmic reticulum kinase [PERK], Inositol requiring protein 1 [IRE-1] and Activating trascription factor 6 [ATF6], respectively) of unfolded protein response (UPR). The primary role of UPR is to try to drive back the system to the former or a new homeostatic state by self-eating dependent autophagy, while excessive level of ER stress results in apoptotic cell death. Our study focuses on the role of PERK- and IRE-1-induced arms of UPR in life-or-death decision. Here we confirm that silencing of PERK extends autophagy-dependent survival, whereas the IRE-1-controlled apoptosis inducer is downregulated during ER stress. We also claim that the proper order of surviving and self-killing mechanisms is controlled by a positive feedback loop between PERK and IRE-1 branches. This regulatory network makes possible a smooth, continuous activation of autophagy with respect to ER stress, while the induction of apoptosis is irreversible and switch-like. Using our knowledge of molecular biological techniques and systems biological tools we give a qualitative description about the dynamical behavior of PERK- and IRE-1-controlled life-or-death decision. Our model claims that the two arms of UPR accomplish an altered upregulation of autophagy and apoptosis inducers during ER stress. Since ER stress is tightly connected to aging and age-related degenerative disorders, studying the signaling pathways of UPR and their role in maintaining ER proteostasis have medical importance.


Assuntos
Estresse do Retículo Endoplasmático/genética , Transdução de Sinais/genética , Biologia de Sistemas/métodos , eIF-2 Quinase/genética , Apoptose/genética , Autofagia/genética , Western Blotting , Sobrevivência Celular/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Retroalimentação Fisiológica , Expressão Gênica , Células HEK293 , Homeostase/genética , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA